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ABSTRACT. When an asymptotically flat spacetime is considered the new ca- 77”
nonical formulation of General Relativity invented by Ashtekar requires a 1

due account of surface integrals which are necessary to realize the Poin- et

care algebra. In particular, the Poisson brackets should be redefined to L hE

get reasonable results. S

H =

The Hamiltonian formalism proposed by Ashtekar (1986), which uses as field variab- 3
les spinor soldering forms or triads instead of a 3-metric, is of considerable inte- ﬂmsii
rest for the quantum gravitational theory. Jacobson and Smolin (1988), Rovelli and S
Smolin (1990) have already developed these applications. However, until now not A
enough attention has been paid to quantization of the asymptotically flat spacetime. .
In such a problem an infinite group of diffeomorphisms which preserve boundary condi- @ cé
tions at spatial infinity is of great importance. The Poincare group can be factored where‘
out from it. In the ordinary canonical formalism, the Poincare group generators are brmm;

expressed in terms of surface integrals taken over a two-dimensional sphere at spa-
tial infinity, as was shown for the first time by Regge & Teitelboim (1974).
The two-fold nature of these surface integrals was disclosed (Regge & Teitelboin, {Hyi
1974): they guarantee differentiability of the Hamiltonian at the prescribed boundary

conditions and they also enter the Poisson brackets algebra were nof
HW), 1)y = nL?), W
. between
surfa%§
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where
Y= (v, M7, (2)

and every vector field represents coordinate transformation from the asymptotic
Poincare group. The second aspect was discussed much less than the first one. But the
straightforward calculation of all the surface terms in the Poisson brackets, in the
general case first done by Soloviev (1985), gives us many advantages, for example, a
possibility of search for new boundary conditions or evaluation of central charges.
Later this method was mentioned by Brown & Henneaux (1986a) with a remark that "such
a calculation is typically very cumbersome". The same authors proved in other publi-
cation (Brown & Henneaux, 1986b) that a Poisson bracket of two differentiable in
Regge-Teitelboim’s sense generators is also a differentiable generator.

Here we will show how the Poincare group manifests itself in Ashtekar’s canonical
formalism where the boundary conditions for new variables are taken from Ashtekar

(1987) and Ashtekar et al. (1987). As the basic variable we choose the triad related

to the 3-metric as follows:

771] - Eia Eja’ (3)

(in our notations, the triad indices are: a,b,c,...; the spatial ones are:

1,,k,...). The Hamiltonian contains three additional constraints as compared to the

standard General Relativity:
H = I[g E* p® Flj %+ 2i N'E® Fi? + N°D, Eia]dax. (4)

These new constraints generate the triad rotations and are analogous to the Gaussian

constraints of the gauge theories. Conjugate to E'™ is the connection A?:

{E‘a(x),A‘;(y)} = 50, 8™8(x,y). (5)

The constraint algebra was obtained by Ashtekar(1987) and Ashtekar et al. (1987),

where, as wusual, the surface integrals arising in calculations of the Poisson

brackets by the formula

{HH} = ] f [

were not taken into account.

S H S5 H .
! - (132) ] d’x, (6)

D

5 E1' 6/1?

Following our approach proposed by Soloviev (1985), we find the Poisson brackets

between the constraints not discarding any surface terms. The appearance of these
surface integrals is not very transparent (Soloviev, 1991) and we do not display them

here. According to Regge-Teitelboim’s ideology and to Brown-Henneaux’s theorem (Brown
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& Henneaux, 1986b) we can expect these surface terms to coincide with those obtained fith

through the Hamiltonian variation at Ashtekar’s boundary conditions (Ashtekar, 1987; BEneH

Ashtekar et al., 1987): gener:
HO) w§ 2N ™ E°E® A5 as + 21§ 0" E® - W E)4 as, (7)
ACKNO¥

but unfortunately the results are different. For example, for the exact Schwarzschild .
solution (Bengtsson, 1990), The
have s
E*® = (1-k/r)7V% 4 11-(1-k/r) T PInn, (8) Abhayd

a
a 1/2 -
Ai = 1/r[(1-k/r) 1] 1ab M’ (9)

, REFERE
where ni=x1/r, by commutating the spatial translation N1=Kl and the rotation
Mjﬂ?mxk, instead of zero momentum we have Ashteka

Ashteki
- Ashteka
W), emy = 1 2 AG, (10)
3 ijk 1 jk Bengtss
- k Brown J
and by commutating the same spatial translation and the boost M=ka , instead of the ks
~ Brown J
Schwarzschild mass 8Tk multiplied by the time translation Xléi we have Jacob
STk ‘ Regge T
HWY,EMY = 22 A'B (11)  Rovell
Solov
The reason for these unpleasant results, as we have found (Soloviev, 1991),is that o f
olovie
the Ashtekar’'s transformation (Ashtekar, 1986; 1987; Ashtekar et al., 1987) is not Pij
rot
strictly canonical. When surface integrals are taken into account the Poisson bracket ‘%
{INla(x)A?(x)dsx, IMjb(y)A?(y)dsy} (12) ;
is not zero and the correct Poisson bracket for Hamiltonian generators should be
{Hl’H2}={H1’H2}old+{H1’Hz}correction’ (13)
where
3 3 6H1 6H2 a b
WoHYy =J]1 X le y 2 (8, ()=
correction GA? (x) 6‘4_‘ (y) J
i dsk d , nkabd gkd 6”1 6Hz
L ac " - 0
o § € (6)6 E Eibch )[ ot of (1692)]. (14) p—
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redefinition of the Poisson brackets

the Schwarzschild

With this the algebra of Poincare group

generators can be definitely realized for solution and the

generators have values that coincide with the Ashtekar’s expressions.
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