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ABSTRACT. We propose a method for estimation of the time delay between
ijdentical time samples with unequidistant data. We have analyzed Van-
derriest’s (1989) and Schild’s (1990) photometric observations of Q0957+561
A,B, the first gravitational lens. The time delay is found to be 1.45+0.04
years. Using the Monte-Carlo simulations we compare reliability of time
delay determination methods and define that the confidence level of our
result is better than 99%. The problem of microlensing effects is briefly

discussed.

I. INTRODUCTION

Since the first gravitationally lensed quasar was detected (Wolsh et al., 1979),
the interest of astronomers to such objects has been growing from year to year. This
is not a consequence of mere curiosity about a new exotic phenomenon, but that of
hopes to realize determination of the Hubble’s constant by measurement of the time
delay (Refsdal, 1964; 1966). Up to now the first gravitational lens has remained the
most attractive object for time delay determination in view of the:

(1) fact it is bright enough for photometry with medium-size telescopes;

(2) easily separated images (6" distance);

(3) possibility of determination of the lens parameters;

(4) possibility of correction of brightnesses for galaxy light contamination;

(5) time scale of the brightness variations is less than/or of the order of the
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expected time delay value;
(6) possibility of monitoring during more than half a year every season;
(7) closeness of flux ratio A/B to 1;
(8) the longest monitoring data sets.

The results of the published attempts of time delay determination are briefly

summarized in Table 1. We can divide the time delay estimates from Table 1 into
three groups: 1-3 - the preliminary results on the basis of few data sets which are
scattered in the interval 1.1 yr < To< 1.8 yr; 5,6 - two independent estimates

(1.11:0.01) yr and (1.14%0.05) yr, but in

which coincide within the quoted errors,
the methods being used no attention has been paid to possible errors caused by the

irregularity of the data set spacing; 4,7-9 - several independent investigations,
which give To around 1.45 yr. Thus, now we have two statistically different estimates
of TO. What is the reason of this discrepancy? Are some of these estimates incorrect
(Beskin and Oknyanskij, 1991) or have the uncertainties in these values been under-
estimated (Falco et al., 1990)? The main purpose of our work is to give answers to

these questions and to determine the exact time delay.

Table 1. Time delay measurements

No| Reference Sample n Range Time
length delay
(years) (years)
1. |[Florentin-Nielsen 1984 S 50 B 1.55%0.10
2.|Schild & Cholfin 1986 4 29 r’? 1.030.10
3. |Gondhalekar et al. 1986 4 11+ uv 1.80+0. 20
4. |Lehar et al. 1989 8 41 radio 1.3120.25
5. |Vanderriest et al. 1989 8 127 B 1.14+0.05
6. |Schild 1990 9 373 r 1.11+0.01
7. |Beskin & Oknyanskij 1991 8 127 B 1.45+0.04
9 373 r 1.43+£0.04
8. |Roberts et al. 1991 8 80 radio 1.41+0.10
9. |Press et al. 1991a 8 127 B 1.47+0.04
1991b 8 207 B+radio 1.48+0.03

2. TIME DELAY DETERMINATION METHOD

The description of the algorithm for the time delay search has been given briefly
in our recent paper (Beskin and Oknyanskij, 1991).

If no microlensing affected the brightness of the QSO images, the flux a(t) of
image A at time t would be, up to a constant factor W (the ratio of magnifications of

two images), identical to the flux b(t+t0) of image B a time To later:

a(t)

B (1)
b(t+T0)

mt(To) =

I
s
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In practice, the measurement and approximation errors lead to some variations of
this ratio mt(TO) near the value of [. Naturally, at T#To this ratio depends also on
the real variability of images. Therefore the dispersion of the ratio mt(T) must have
a minimum at T=T0. We use this property of gravitational lenses as a priori inform-
ation. Note, that this idea was used also by Vanderriest et al. (1989) and Falco et
al. (1990) with some distinctions. Our method has some essential improvements which
will be obvious from what follows. We do not interpolate. the data into an evenly
spaced grid. We take only real measured flux points for one of the images, namel; B,

b(tk+T) and couple them (if possible) with weight-averaged fluxes for the second

image A
N owalt )
a=a(t )= i (2)
Kk K E:wi
bin
in intervals |t1-tk+T|$ &, (3)

where € is the halfwidth of bin; wi=1/[cz(ai)+of(ai)] is the weight of points a(ﬁ)
Each point a(ti) has been weighted according, first, to the measurement errors Oz(aﬂ
and, second, binning errors Oj(ai), which depend on the closeness to the centre of
the bin (the weighing function is taken from average variation of a(t)). Errors of

the weight-averaged fluxes a are equal to

_ 1
0la ) = —— . (4)
/ ZW
i
bin
a(tk) a
Then we can calculate the values of mt (T) = 5 +0) = 5 ,
k k k
their errors
o*(a) ()
o (t) =m (T) + — , (5)
k t 2 2
k a b
k k

where OE(bk) - measurement error of'bk, and relative weights

(6)

1

2
k=1 Ok(T)
In contradistinction to Vanderriest et al. (1989) and Falco (1985) we take into

account different weights of sample values mt(T) by introducing special

normalization.
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For every value of T we calculate two heuristic functions RI(T) and RZ(T):

s
Rl('t) = —W » (7)

s, (™)
R (T) = ——— , (8)
2 S(T)
where
= n ) = 2
s(1) = =25 k;[m‘km m(1)1* p_(T) (9)

is a sample weight-averaged dispersion of m, (T);
3

SO(T)= T (10)

Z 1

2
k=1 OR(T)

is a theoretical weight-averaged dispersion of individual value m
k

) = 2 . 3 (a-3(t)? S (b - B(1))2
SV(T) - Hl— [ f(T) ] [ k=1 _k , k=1 k2 ] (11)

a 2(n) b “(1)

is a theoretical sample dispersion of m, (T), which is defined only by variations

of a and bk, respectively; *
n
s(t) = ”‘i_lk;[n."km— ()12 (12)
is a sample dispersion of m, (t);
n is the number of independe;t values of ratio m (t) for fixed T; a(T), b(T), m(T)
are sample averaged values a ., bk, m (t), respectively.
Kk

If TaTO, then function Rlal and must at least have a minimum, and function R2 must
be essentially more than 1 and reach maximum. The statistic R2 is necessary to veri-
fy the nature of R1 minimum, which can be reached at occasionally small scattering
of the fluxes ak and bk. If, for example, RI(T') is about 1 and has a minimum, but
RZ(T') is also about 1, then we can say that the minimum of RI(T') is the consequence

of small dispersion of the sample fluxes for this T'.
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III. RESULTS AND DISCUSSION

Figs. 1 and 2 show the results of calculation of the statistics R1 and R2 for
Vanderriest et al. (1989) (basic sample) and Schild (1990) (control sample) data,
respectively. The most noticeable extrema in both statistics for these samples
correspond to T0=54Oi30 days (€=15 days) and - 52515 days (£€=7.5 days). To estimate
the significance level of this result, we used Monte-Carlo method, because usual
parametrical analysis may be incorrect for this case. We applied our method to
thousand synthetic light curves of A and B, which have the same dispersion, mean,
time distribution, and power spectrum, as actual data, and estimate that the
confidence level of the result obtained is about 99%. For both samples the time
delay is about 530:15 days with the confidence level better than 99%.

We generated Monte-Carlo data sets, as mentioned before, but with (simulated)
measurement errors identical to the true data (for basic sample) and with assumed

time delays equal to 420 (case 1) and 540 (case 2) days.
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Fig.1. Heuristic functions for the basic sample: a) function R,(T) with a minimun
near 540 days, b) function RZ(T) with a maximum near 540 days.
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Fig.2. Heuristic functions for the control sample: a) function R_(T) with a minimum
near 525 days, b) function RZ(T) with a maximum near 525 days.

Then we applied these simulated data to time delay determinations by two different
methods: ours and the cross-correlation method using interpolation (see Gaskell and
Spark, 1986). Figs. 3 and 4 show the result of 100 simulation data sets, each being
analysed, by means of the two methods, for two cases of the actual time delay. In our
method we adopted any value of T as a determined time delay only for the cases when
both R1 and R2 had absolute extrema at this delay. Thus, we have no values of time
delay for part of the synthetic data sets. In the case 1 (Fig. 3), when the actual
time delay is about a year, both methods have approximately equal power and reliabi-
lity. We see that a probability to find a delay of 540 days or more, if the actual
one is 420 days, is <1%. In case 2 the advantage of our method is obvious. The width
of histograms for our method is essentially smaller than for the cross-correlation
one of Gaskell and Spark (1986). As it can be seen from Fig. 3b, the probability of

finding a delay equal to/or less than 450 days for the actual time delay of 540 days
is about 10%.
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Fig.3. Distributions of the fitted time Fig.4. Distributions of the fitted time
delays for the case 1: a) our method, delays for the case 2: a) our method,
b) cress-correlation method. b)cross—-correlation method.

Now from Figs. 3a and 4b we can deduce 10 confidence levels obtained by appli-
cation of these histograms to our results: To=530t15 days.

The recent papers by Vanderriest et al. (1989) and Schild (1990) based on the
longest uniform photometric series of 8-9 years’ duration deserve more detailed
analysis. We briefly discuss possible reasons which might lead to a false result in
these papers. In our opinion the main reasons are the following: the influence of

the data spacing and the fact that the approximation errors have not been taken into
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account.
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Fig.5. Power spectrum for the flux variations of A and B
(dashed line) images for the basic sample.

Fig.5 shows the power spectra of the basic sample. The maximum at V=1/415d in the
power spectrum of the B image is a result of interference of the frequencies corres-
ponding to the trend with a characteristic time of =3000¢ and a period of a year in
the spectral windbw (see Deeming, 1975). This artifact maximum may lead to consider-

able maxima in the autocorrelation and cross-correlation functions, and naturally
they are artifacts too.
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