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ABSTRACT. Sets of motion constants of a particle that correspond to
different types of r-motion are considered. The topology of these sets 1is
determined aﬁd a number of constants characterizing these sets are found.
An expression is obtained for ‘the capture cross-section of a particle
moving at an arbitrary velocity at infinity in the gravitational field of
the Schwarzschild black hole. Slow}and ultrarelativistic particles are
considered. A comparison is made with the results of Meilnik and Plebansky.
We examine possible finite motions of particles in the Kerr metric.
We determine the topology of various sets of motion constants of the
particle and identify invariants that are independent of the rotation pa-
rameter. An expression is obtained for the photon capture cross-section
of the Reissner-Nordstrom’s black hole. An expression is obtained for the
uncharged slow particle cross-section of the Reissner-Nordstrom black
hole. The Schwarzschild black hole and extreme Reissner-Nordstrom black

hole are considered.

1. TYPES OF UNBOUND GEODESICS IN THE KERR METRIC

An important problem in the study of unbound motion of particles in the Kerr met-
ric is the description of the set of constants of motion for which a particle travel-
ing from infinity goes below the horizon of a black hole. We shall give a qualitative

description of this set and also of the set of constants of motion for which the
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particle asymptotically approaches a surface r = const, placed around the black hole,
and the sets of constants of motion for which the particle departs to infinity. The
solution to this problem is important in connection with the accretion of non-
interacting particles onto a rotating black hole.

The equation of motion for the radial variable in the Kerr metric is (Chandrase-

khar, 1983):

p*(dr/dt)? = R(r), (1)
R(r) = r*+(a®-t%-n)r? + 2MIn + (£-a2)%Ir - a°n (Photons),

R(r) = r4+(a2—§2—n)r2 + 2M[n + (E-a)zlr - azn - r?A/E (Particles),

where
p3%= r? + a®cos®0, A = r’-2Mr + a®, a = s/M. (2)

The constants S and M refer to the black hole; S is the angular momentum and M is
the mass of the black hole. The constants E, £ and M refer to the particle, namely E
s its energy at infinity, & = Lz/E (Lz is the angular momentum of the particle about

the rotation axis of the black hole), and M = Q/Ez. Q is given by

Q= p; + cos’® [a°(E% - E%) + L;sin—zel. (3)

It is readily verified that the radial motion of the particle depends on the

following constants:

a=a/M, E=E/M, E=¢&M 1 =1
where I is the mass of the particle.
The radial motion of photons does not depend on the constant E. Instead of the co-
ordinate r, we now introduce ;=r/M. (The ~ - symbol will be omitted henceforth).
Thus, the character of motion in the r-coordinate for the given value a is determ-
ined by the three constants E, §, M in the case of a moving particle, and by the two
constants & and M in the case of photons.

Depending on the multiplicities of the roots of the polynomial R(r) ( for r?r+ =

1+/ l—az), we can have three types of motion in the r-coordinate (Zakharov, 1983;
Zakharov, 1986), namely:
(1) the polynomial R(r) has no roots (for rZr+). The particle then falls into the
black hole;
(2) the polynomial R(r) has roots and rmax>r+ (rmax is the maximum root); then we
have (OR/Or)(rmax)>O, and the particle departs to infinity after approaching the
black hole;

(3) the polynomial R(r) has a root and R(rm ) = (BR/Or)(r
m

)=0; the particle now
ax X

-}
takes an infinite proper time to approach the surface r=const.
We shall now examine the sets of motion E, § and T, corresponding to different

types of particle motion for a given black hole rotation parameter a=const. Let us
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cut the space E, §, M with the plane E=const>1 and describe in this slice the set of
constants corresponding to different types of motion. It then turns out that the
boundary of the set of constants corresponding to the second type of motion for 120
is the set of constants for which the motion belongs to the third type. We shall look
upon this set as a graph of the function MN=N(£). We note that the set of these
constants as functions §(r) and N(r) was examined by Chandrasekhar (1983). Some of
the properties of the function ™M(§) are described in the paper by Zakharov (1986).
There is a simple derivation of effective capture cross-section for particles pos-
sessing an arbitrary velocity at infinity in the field of the Schwarzschild black
hole (Zakharov, 1985; 1988; 1991).
1/2

2 _ =(d°-18d-27)+(d+9) [ (d+9) (d+1)]

NPT T
o 5d , where d =(E°-1) .

L

It should be noted that 0 = ﬂlir/(E?—l) is the particle capture cross-section (in
units of square of the mass of the black hole).
Consider a moving particle of arbitrary energy at infinity (E>1). It can be

verified that at

- (d°-18d-27)+(d*+28d°+270d%+972d+729) /2
max 2E2d

r =(8d%/27 +m E%d(d/3+1))%-24/3 (4)
max max

§ =2a/(r -2),
max max
these values ensure that R(r) and dR/dr vanish. We also note that for values chosen
in acccrdance with (4) these values correspond to the maximum of N(E). The values
n and r . turn out to be equal to the corresponding values of these quantities
max

max

for a=0 (Schwarzschild metric) (Zakharov, 1985; 1991).

2. QUALITATIVE ANALYSIS OF SOME BOUND GEODESICS IN AN EXTREME KERR METRIC AND
CONNECTION OF THE PROBLEM OF THE CLASSIFICATION OF PARTICLE MOTION IN THE KERR
METRIC WITH THE SINGULARITIES OF THE SMOOTH FUNCTIONS (WITH "CATASTROPHE THEORY")

In this chapter it will be shown that a black hole in extreme rotation can have
stable geodesics with any energy in the range 0< E < 54/2px?, where [ is the
particle mass, although it is well known that for a particle moving along a circular
geodesics in the field of a black hole in a state of extreme rotation, the binding
energy has been found capable of reaching the value B—hqpcz.

One readily finds (Carter, 1968) that if the particle is moving in the equatorial

plane (0=m/2), Q=0. The particle will then travel in a circular orbit if the
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following relations
R(r)=0, OR/8r=0 (5)
are satisfied, as well as the orbital stability criteria

0%R/0r°<0. (6)

Let us consider a black hole with an extreme value for the rotation parameter
(a=M). Assume that the particle’s orbits lie in the equatorial plane, with the

following values for the constants of motion:

L=2E, E<(1/V3) uc®, =M. (7)

It is not hard to see that the criteria (5), (6) will then hold true. Accordingly,
as a particle moves through successive near-circular orbits, an energy of order pcz
can be liberated. It is also noteworthy that for any values of the constant Q (Q>0)
and the constants of particle motion that satisfy the conditions (7), the criteria
(5), (6) will remain valid; stable orbits will exist that correspond to the motion of
a particle along the surface r=const with a given energy and given angular momentum,
but which are not circular. The maximum value of |9| for such orbits will be determ-
ined by the value Q. Outside the equatorial plane one finds, as Wilkins has
argued, that stable nonequatorial orbits also can exist throughout the energy range

34/2ucz<E<pc2:
L =2E, O>EE-1, (8)

One should recognize, however, that if the black hole departs slightly from a state

of extreme rotation, there can be no stable circular orbits with energy in the range

0<E<3_1/zpc2.

rotation falls short of the extreme case. This result can be demonstrated either by

In just the same way, the stable orbits (16) will vanish if the

considering the potentials V:’ as done by Wilkins (Carter, 1968) (the potentials Vﬁ
V_ will merge into a "knife edge" (Wilkins, 1972)), or by turning to Egs (5), which
implicitly specifies, for example, the parameters Lz and E as functions of the rotat-
ion parameter (Zakharov, 1986). The property that we have here is analogous to the
straigth-line part of the relation between p" (pL) and the capture cross section in
the case where a=M and photons or particles (Zakharov, 1986) are incident on the
black hole. Thus the presence of stable circular orbits is not the sole property that
distinguishes extreme (a=m) from nonextreme holes. Since the Wilkins potentials coin-
cide (V+=V_) for parameters whose values confirm criteria (6), one can readily see
that the value m for the rotation parameter a represents a bifurcation point corres-
ponding to "pleat" singularity (Brocker & Lander, 1975; Poston & Stewart, 1978;
Arnol’d, 1984) and if a departs from that value, the stable orbits (7) will

disappear.
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We also showed the connection of the problem of classification particle motion ir
the Kerr metric with the singularities of the smooth functions (with "catastrophe
theory"), particularly, those sets are connected with the semialgebraical submanifold
of the algebraic manifold Df ("swallow tail") (Zakharov, 1991), where the surface
Dr (the "swallow tail") is defined in the space parameters u, v, w by the set (Bro-

cker & Lander, 1975; Poston & Stewart, 1978; Arnol’d, 1984)

4 2
X +ux +vx+w =0
D = (u,v,w)| 3x,

4x3+2ux+v =0

Similarly, the algebraic curve on the manifold Df is connected with a set of the
photon motion constants, to which the multiple root of polynomial R(r) corresponds

(Zakharov, 1991).

3. CLASSIFICATION OF FINITE PARTICLE MOTION IN THE KERR METRIC

Here we shall consider only finite orbits for which the particle energy satis-
fies E2<1. In this chapter we classify various types of finite motion of test partic-
les in the Kerr metric by investigating the roots of R(r), as Synge did for the
Schwarzschild metric (Synge, 1960) and as we did for unbound paréicle motion in the
Kerr metric.

We thus plan to classify particle motion having E2<1. The polynomial R(r) will

then clearly have at least one root with r>r+=1+(1—a12)1/2

, since R(r+)>0, and for
large enough r, R(r)<0. Since for r>r+ the polynomial can have no more than three
distinct roots when multiplicity is taken into account (Zakharov, 1989), possible
types of motion are as follows:
1) the polynomial R(r) has one nonmultiple root at r>r . The particle will fall
into the black hole in a finite proper time;

2) R(r) has three nonmultiple roots (r+<r <r2<r3). There is then a range of

r-values (r2<r<r3) for which finite motio; is possible over an infinitely long
particle time. If r1<r<r2 or r>r3, no motion is possible. If r<r1, the particle
will fall into the black hole in a finite proper time;

3) R(r) has two distinct roots r and r_ with r <r <r_ where r is a nonmultiple
root and r2 is double. Particle motion is impossible for r>r2 or r1<r<r2. There is
a stable orbit at r=r_, since R"(r2)<0.

4) R(r) has two distinct roots r, and r, with r <r<r, where r is a double root
and r, is a single root. Motion is impossible for r>r2 and an unstable orbit
exists for which r=r1;

5) R(r) has one triple root r=r, (r1>r+, R(r1)=R'(r1)=0).

Types 3 and 4 are clearly manifolds of codimension 1, and type 5 is a manifold
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of codimension 2 in the space of constants defining the motion, namely E, L and Q. We
shall refer to orbits for which particle motion is confined to a surface of constant

r as being spherical. This terminology is not entirely accurate, but it is quite

widespread.

Note that if the black hole is undergoing extreme rotation (a=1), the possible

types of motion are as follows (with Lz=2E and E®>1/2):
1) type 4 for 0<Q<3(E*-1/3);
2) for Q=3(E2—1/3) there is a triple root (r=1) and a root at r2>1. Thus, there
is an unstable orbit (type 6 motion) when r=1; ;
3) for 3(52—1/3)<Q<E4/(1—E2) we have a double root at r=1, as well as roots with
1<r1<r2, so a region r1<r<r2 exists in which finite motion is possible and at r=1
we have stable spherical orbits (type 7 motion);
4) for Q=E4/(1—E2) we have two double roots r=1 and r = EZ/(l—EZ), and there are
thus two stable spherical orbits (type 8 motion);
5) when Q>E4/(1~E2), we have one double root (r=1) and thereby one stable spheri-
cal orbit (type 9 motion).

It should also be pointed out that just as for the corresponding orbits in the
case of infinite particle motion, orbit types 6-9 disappear when the rotation parame-
ter no longer has an extreme value (structural instability (Zakharov, 1989)). The
case 1/3<E2<1/2 may be treated similarly.

There are thus two values of the angular momentum corresponding to stable

circular orbits and two correspoding to unstable circular orbits for a given particle

energy:
- 2“,’ - e ¢ 12
[P=s -(a"-18a-27)-(a+9)[(a+9) (a+1)] , (9)
* 2a
1/2
o 172
Lo, ~(a _1gam27)+éz+9)[(a+9)(a+1)] . (10)

We shall give a description of the types of finite radial motion in the Schwarz-
schild metric. It is not difficult to verify that when the particle energy E is fixed
and |L|>]Ls|, type 1 motion takes place; for |L|=|L®| we have type 3 motion, for
|Lu|<|L|<|Ls| we have type 2, for |L|=|L"| we have type 4 and for |L|<|L"| the motion
is of type 1. Finally, |L|=|Lu[=|Ls| results in type 5 motion (this accurately summa-
rizes-the well-known fact that the maximum of the polynomial R(r) merges with the
minimum at a=-9, E2=8/9). We now investigate those sets of constants of the motion of
a particle that correspond to different types of motion, given the value of the black
hole rotation parameter (angular per unit mass). As before we pass a plane of cons-
tant E through E, Lz, Q space and examine the sets of constants that correspond to

various types of motion in the Kerr metric. The results of studying those sets of
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constants of the motion of a particle that correspond to different types of motion2

are quoted in the papers of Zakharov (1989; 1991). -

4. ON THE PHOTONS CAPTURE CROSS SECTION AND SLOW MOTION
PARTICLE CAPTURE CROSS SECTION IN REISSNER-NORDSTROM METRIC

It is well known that the radial motion of a photon is determined by equation

2
dr _
[a] = R(r), (11)

where R(r) = r4—52r2+2€2r—0252, Q - the charge of the black hole divided by the mass
of the particle, £=L/E, L is the angular momentum of the photon and r is expressed in
units of the mass of the black hole.

Thus the photon cross section of the black hole is defined by the expression

(Zakharov, 1989; 1991a,b).

2_ 8q2-36q+27+V{éq2-36q+27)2464q2(1—q)
x“= ) (12)
2(1-q)
2
where gq=Q .

We also obtained a simple derivation for the capture cross-section given in the
case of slow motion of the particle (Zakharov, 1990; 1991a,b). Analogous results are

obtained in the relativistic theory of gravitation (Zakharov, 1990; 1991).
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