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HOW MUCH CANONICAL ARE ASHTEKAR’S VARIABLES?
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ABSTRACT. Attention is paid to the fact that in the field theory a commu-
tator of functional derivatives may differ from zero by surface integrals.
Ashtekar’s formalism is a primer which demonstrates that transformations
looking locally as canonical can lead to the appearance of surface terms in
symplectic form of the field theory. The prescription for O-function is
given that allows to preserve surface terms in local calculations of

Poisson brackets.

Recently proposed new Hamiltonian variables (Ashtekar, 1986) are of great interest
in connection with the possibilities that they open up in quantum gravity (Jacobson &
Smolin, 1988; Rovelli & Smolin, 1990). In a set of papers (Henneaux et al., 1989;
Goldberg, 1988; Friedman & Jack, 1988; Dolan, 1989) it is shown that Ashtekar’s
variables arise after a sequence of canonical transformations from the standard
tetrad Hamiltonian formalism. The keypoint of this sequence is the transformation to
the complex (anti)self-dual connection. We will show that just in this transformation
some surface terms have been ignored, though these terms are not zero, for example,
in asymptotically flat space under the boundary conditions accepted in publications
(Ashtekar, 1987; Ashtekar et al., 1987). The reason was that some statements proved
only in mechanics were extrapolated to the field theory. At the same time, the Ashte-
kar formalism will be considered as a primer in which we see entering of surface
integrals into symplectic form of the field theory.

If in mechanics the relation
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is an identity, then in the field theory for the analogous equality
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it is not, in general, true because of presence of partial derivatives in the
integrand of F[¢], where for simplicity only first derivatives are considered
3¢ (z")
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and the coordinate invariant integral is taken over a connected finite or infinite
region V with a smooth boundary OV (A4,B,C are some abstract indices). This may look
nonevident if operate with O-functions and the reason lies in the inadequacy of this
formalism. We shall comment upon this below. But it is easy to dc the job by taking

smeared functional derivatives defined as
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where N*(x) is an arbitrary infinitely differentiable function with transformational

properties preserving the coordinate invariance of the integral. Then we can see
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where surface integrals are taken over the boundary 8V, the square brackets denote
antisymmetrization and comma - a coordinate partial derivative.
Now let us trace the.sequence of transformations which lead to Ashtekar variables.

The symplectic form of the tetrad Hamiltonian formalism of gravitation in the time

gauge is

= f SE” (x) AT (x)d’x, (6)
where in our notations, the triad indices are: a,b,c,...; and the spatial ones -
i,j,k,.... As was shown (Henneaux et al., 1989) earlier these variables first should

be changed for


we
Text Box


~la_ ia - ja -1 ab
E'®= EE™®, K?(x) Kle + EJVE, (7)

where E1a is the inverse matrix of E?, E = det(E?), Ki is the second fundamental

form of the time hypersurface, and J2P are the six constraints generating triad

rotations. Then we have

~ia b _ 1 qigab a b _
{ E (x),Kj(y)} =5 6)6 O0(x,y), {Kl(x),Kj(y)} = 0. (8)

The final step to Ashtekar variables is

E'?(x) — Eia(x),

5
K(x) — tAj(x) = +iK>(x) + ——FIE], (9)
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where we are free to use +A?(x) or _A?(x) as a conjugate to Eia,

~ _ [wib b 3 a _ 1 _abc jb k _jb
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Ifj are Christoffel symbols and

OF[E] _ I (), (11)

SE 2 (x)

because terms with 6P? are divergences and give no contribution to the functional

derivative. The Poisson bracket

{JNia(x)!A?(x)dBX; Injb(y)*A?(y)d3y} -
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according to (5) is different from zero. Therefore the Poisson brackets in Ashtekar

formalism should be defined by formulae:
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and the corresponding symplectic form is
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[of

Oov
v

Of course, calculations made for compact spacetime sections are not affected by thest
redefinitions. An example of crucial importance of these corrections is the canonical
realization of Poincare algebra arising at spatial infinity in asymptotically flat
spacetime. In the standard metric canonical formalism of gravity the Poincare grouy
generators are expressed in terms of surface integrals taken over a two-dimensional
sphere at spatial infinity, as was proved for the first time by Regge and
Teitelboim (1974). These surface integrals play two roles: they guarantee differen-
tiability of the Hamiitonian at the prescribed boundary conditions and they also

enter the Poisson brackets algebra

HWNS), 1)y ~ HON, M), (16)

where the square brackets denote the commutator of vector fields (the equality is
maintained in the "strong sense" only for surface integrals when each vector field
represents coordinate transformation from the asymptotic Poincare group, because
different expression than [N,M]7 is present in the "algebra" of constraints (Bergmam
& Komar, 1972; Rovelli, 1986)). The second role was discussed much less than the
first one. The criterion of differentiability that is usually exploited can giwve
surface terms only up to the phase space constants. But the straightforward calcu-

lation of all the surface terms in the Poisson brackets (Soloviev, 1985) has not such
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shortcoming (see also a footnote in Arnold’s beook (Arnold, 1974) though not touching
surface integrals) and gives us many advantages, for example, a possibility to search
for new boundary conditions or to evaluate central charges. Later this method was
mentioned (Brown & Henneaux, 1986) with a remark that "such a calculation is typical-
ly very cumbersome". Nevertheless the same authors have proved in other publication
(Brown & Henneaux, 1986) that a Poisson bracket of two differentiable in Regge-
Teitelboim’s sense generators is also a differentiable generator.

We have shown recently (Soloviev, 1991) that without redefinition of the Poisson
brackets the realization of the algebra of Poincare group generators in the Ashte-
kar’s formalism for the Schwarzschild solution meets serious difficulties. But with
the new Poisson brackets (14) the algebra of Poincare group generators can be defi-
nitely realized (Soloviev, 1992) for the Schwarzschild solution and the generators
have values that coincide with Ashtekar’s expressions (Ashtekar, 1987; Ashtekar et
al., 1987).

Now let us give the promised comment on the inadequacy of usual handling of
0-functions for the problem of calculating surface terms in Poisson brackets. The
discrepancy between local calculations and the above exploited variaticnal approach

arises because of using the relation

0 0
— * = d(x,y) = 0. (17)
Ox Oy

it is not difficult to check that surface integrals in Poisson brackets will not be

lost if instead of (17) the following formula is applied:

9 0
— + —[8(x,y) = -8 (S )0(x,), (18)
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where the surface O8-function is defined as

J‘ £1(x)8 (s )dx = § £ (x)ds = J £ 0dx, (19)
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and fl(x) should be a vector density, infinitely differentiable in an n-dimensional
region V together with its boundary dV. Of course, for infinite domain V the
requirement of convergence of the surface integrals should be added. All usual
formulae for the O-function and its derivatives taken over only one of its arguments
are applicable. By differentiating (18) useful formulae for mixed second énd third

derivatives can be deduced
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Really, these rules are enough for evaluating surface integrals in Poisson brackets
in usual situations, for example, in the metric Hamiltonian formalism of general
relativity where the answer is known (Soloviev, 1985).

The main conclusion the author would like to make refers to generality of the
obtained result. The noncommutativity of the variational derivatives considered here
should have a wide range of application and through a new light on canonical
transformations in field theory. Such transformations are usually inherent in the
procedure of reduction in gauge theories. We plan to discuss this point in a separate
paper. It seems to us extremely interesting and important that in Ashtekar’s
formalism we see the appearance of surface integrals in the symplectic form of field
theory. Regge and Teitelboim taught us how to deal with surface integrals arising in
the Hamiltonian. They suggested that the freedom to add surface terms must be limited
by the requirement of absence of any surface integrals in OH. The presence of surface
terms in a symplectic form, probably, forces us to extend the phase space and to
include boundary values into it as new canonical variables. These surface variables
should have their own Hamiltonian and how to find it we should be taught by a new

approach.
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