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ABSTRACT. It is shown that observations of galaxy and cluster correlation
functions and large-scale bulk motions indicate the extra power of initial
Gaussian density perturbation spectrum. Upper limits of cosmic microwave
background (CMB) anisotropy at a few degrees restrict such extra power from
above. CDM+Z spectrum which satisfies recently reported observations with-
out any contradictions with the modern observable upper limits of CMB
anisotropy is constructed. It contains additional power of ~170% rela-
tive to CDM-spectrum on the scale (3n103)h_1Mpc. The amplitude of the
spectrum and its slope in this region are determined by the observed

characteristics of the large-scale structure.

INTRODUCTION

The data of observational cosmology which have been obtained during the last years
on the large:écale structure of the Universe (distances to far galaxies measured
without Hubble law, their peculiar velocities, voids, Great attractor,etc.) give a
chance to progress in solution of the reverse problem of cosmology - reconstruction
of the initial power spectrum of density perturbations from all the observable
characteristics of the large-scale structure of the Universe. Solution of this prob-
lem permits to clear up the nature of the matter and/or physical processes in the
early Universe when this spectrum was formed. Meanwhile only the first attempts of

such reconstruction have been undertaken (Bardeen et al., 1987; Turner et al., 1987;
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Juszkiewicz et al., 1987; Martinez-Gonzales & Sanz, 1989; Dekel, 1991).

The purpose of this paper 1is to analyse the requirements imposed on the initial
power spectrum of density perturbation for securing conformity of both theoretical
and observable large-scale structure characteristics of the Universe. Most important
from such characteristics aré:

- anisotropy of the microwave background radiation temperature;

- galaxy and cluster correlation functions;

- bulk motion;

- mean distances beetwen bright galaxies, clusters or their concentrations;

- biasing or ratio of the galaxy to mass correlation functions.

SPECTRA AND THEIR NORMALIZATION

We analyze the following initial power spectra of the density perturbations:

1) HDM(1)-spectrum with one sort of massive neutrinos and HDM(3)- spectrum with
three sorts of them (Bond & Szalay, 1983);

2) CDM-spectrum (Davis et al., 1985);

3) Hybrid HC-spectrum, which is a combination of both HDM-spectrum with s%mn=0'4
and CDM-spectrum with Qam=0'5 (Bardeen et al., 1987);

4) CDM+X-spectrum with additional power on scales 5 h"1$1<:-1<10001'1"1 Mpc rela-
tive to CDM-spectrum (Bardeen et al., 1987);

5) DI (double inflation) spectrum proposed by Turner et al. (1987), which is a
combination of the long-wave neutrino spectrum (after the first inflation) and pheno-
menological short-wave spectrum (after second inflation).

The procedure of normalization of the spectrum is very importante. There are
several ways of realization of such procedure:

a) Normalization to the galaxy correlation function (N1) - Egg(Sh—lMpc)=1;

b) Normalization to the second moment of the correlation function Jag(R) at
R=10h"'Mpc (N2);

c) Nermalization to the mean square amplitude of mass fluctuations (AM/M)rms=1 at
8h™' Mpc (N3).

The calculation has been executed at J3q normalization for all spectra. Coeffici-
ents for transformation to another type of normalization are presented in Table 1
without DI-spectrum, because the long-wave part of this spectrum has been normalized
by J3g normalization, but the short-wave part - by the galaxy correlation function.
, 8 are

CDM HDM
the density (in units of the critical density) of baryons, cold dark matter and hot

The characteristics of the models are presented in Table 2, where Qb, Q

dark matter, respectively, Gog is the root mean square density fluctuations on the

galaxy scales.
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Table 1. Coefficients for transformation from N2 to N1

and N3 normalization for each spectrum

A(N1) A(N2) A(N3)
HDM(1) 0.84 1 1.36
HDM(3) 1.08 1 1.32
CDM 0.77 1 1.17
HC 0.61 1 1.27
CDM+X 0.81 1 1.19
CDM+2 0.83 1 1.19

According to the hypothesis of the large-scale structure of the Universe as a re-
sult of development of Gaussian random density perturbations the galaxies, clusters
and more large-scale objects were formed in the density peaks of such perturbation
field. Obvious question is whether the space distribution of both peaks (bright ob-
jects) and total density (baryons and dark matter) coincide or they are displaced
relative to each other by the value of the biasing parameter (b).

Fruitful turns out the approach when all observable objects in the Universe are
formed in the density peaks which have amplitudes larger than some threshold value:
%%QGO. Formalizm of such approach has been developed by Politzer & Wyse (1984)
and Bardeen et al. (1986). The order of the calculation of the biasing parameters for
galaxies and clusters has been described in detail in our paper (Hnatyk et al.,
1991). We have calculated the biasing for each model using the observed galaxy and
cluster concentrations no=~(h/4.6 Mpc)3 and n°=(h/55 Mpc)3, accordingly. Thus all mo-
dels conform to the observed concentrations of bright galaxies and clusters. HDM-
mdels are exceptions, because galaxies in such models are formed by fragmentation
of larger objects. In this case the equation for vt has no solutions for such ob-
served concentration of galaxies, therefore the galaxy biasing obtained using such
method is uncertain. The biasing for HC model we assumed to be equal to 1 so far as
in that case the moment of galaxy formations is consistent with modern data about
the age of galaxies and old stars.

Results of calculations are presented in Table 2. The mean height of the peaks
dba from which bright galaxies and rich clusters are formed in any models of the
Universe as well as the moment of appearance of the first counterflow in dark matter
and generation of shock wave in baryon component, za=<v>aGO(R3)/1.69—1, are presented

too.

TESTS OF FLUCTUATION SPECTRA

Measure of matter clustering on scales SZOHquc is two-point bulk galaxy-galaxy

correlation function (Davis & Peebles, 1983), which has the correlation radius
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r =S.4hf1Mpc and the power exponent n=1.8.
g

Table 2. Parameters of cosmological models

HDM(1) |[HDM(3) |HDM(3)| CDM HC DI |CDM+X |CDM+Z

Q 0.1 0.1 |« 0.1 0.1 0.1 0.1 0.1 0.1
Q - - = 0.9 0.5 | 0.9 0.9 0.9

CDM
Q 0.9 0.9 |~ 1.0 - 0.4 - o &

HDM
b, 0.64| 0.51| 0.52| 1.62| 1.00| 1.47| 1.69| 1.76
b 2.69| 1.79| 1.96| 5.54| 3.08| 3.70| 5.51| 5.58
o, 2.00| 2.00| 2.00] 2.89| 2.25| 3.03] 2.58 2.34
@ - = = 2.80| 2.85| 2.53| 2.80| 2.80
z_ = - - 3.78| 2.80| 3.53| 3.27| 2.87
o .| 1.08 1.54 1.46| 0.44] 0.76| 0.67 0.43[ 0.42
w>_ 3.00| 2.58| 2.71| 3.10| 2.76| 2.92| 3.02| 2.98
z_ 0.91| 1.35| 1.34|- 0.19| 0.24| o0.16|- 0.23|- 0.26

On larger scales (ZZOh—lMpc) the two-point cluster-cluster correlation function is
similar measure. It is calculated for Abell clusters and approximated by a power lay
(Klypin & Kopylov, 1983; Bahcal & Soneira, 1983) with the correlation radius
rc-'~—'20-z-25h_1 Mpc and power exponent n=~1.3+1.9.

The tendency to clustering of galaxies in the neighbourhood of Abell clusters
(r<40h_1Mpc) is described by two-point cluster-galaxy crosscorrelation function
(Peebles, 19805. It is approximately equal to the root square of the product of both
the galaxy and the cluster correlation functions that follows from the essence of
the cross-correlation (Bahcal, 1988).

Thus, the observed two-point correlation functions of galaxies and clusters with
ratio between them ggg:gcg:gmu1:(2+5):(9+18) are observable characteristics of the
large-scale structure of the Universe. Scatter of these values stipulated by errors
of determination of rg, rcg, rc and slope of the correlation functions.

In the theory of structure formation of the Universe from Gaussian randon
perturbation all correlation functions can be calculated if the initial power spect-

rum P(k) is known:

b bb ¥ 2 sin(kr)
£ (r)= =2 fp(k) K° WkR ) W(kR ) Sintkr) ..
ab (27[;2) a b kr
)
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where indices a, b mark either correlation of perturbation of galaxy scales (g) or
cluster scales (c¢), W(kr), the filter function for a- or b-scales, ba, bb, the
biasing for peaks of these scales. In this paper we defined R =O.3Sh_1Mpc and
&=&f1Mpc that correspond to full masses of these objects ii=2-1011M@ and
%25-1014M®, accordingly. ’

For analysis of the dependence of correlation functions from the initial spectrum

we calculated them for all models. Results of the calculation are presented in Fig.1.

T T T

a)

log v (h™'Mpe)

Fig.1. Galaxy (a) and cluster (b) two-point correlation function for different densi-
ty fluctuation spectra. Dashed line corresponds to HDM models with one (1) and (3)
ﬁbrt of massive neutrinos, solid line - CDM spectrum, dashed-dotted - HC, dotted -
DI, short-dashed - CDM+X, thick solid - CDM+Z. Black circle shows correlation func-
tions which are defined by Davis & Peebles (1983) from galaxy catalog - (a) and by
Klypin & Kopylov (1983) from cluster catalog - (b).

We can see here that only the spectrum which has P(k)ock_1 in the region
3" '<k'<100n"! Mpc may explain the observed correlations.

Space distribution of galaxies and clusters gives the main information about the
large-scale structure of the Universe. Observational data about bulk motion of gala-
xies are also important because they can give additional information about the dist-
ribution of dark matter.

From the data on the distribution of matter on scales ZlohflMpc it follows that
perturbations on these scales are small and therefore are described by the linear

theory of perturbations. In this case root mean square bulk velocity of matter is de-
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fined by the power spectrum which 1s smoothed on the corresponding scale. The basis
for such an approach has been elaborated by Vittorio et al. (1980) and Kaiser (1988).
In the theory of structure formation of the Universe from adiabatic Gaussian pertur-

bation the root mean square bulk motion of the region of radius R is equal to

rms

vV (R)= [H2/27EZ J P(k) W*(kR) dk]“z.
Q

The dependence of VMB(R) on the smoothing radius R is shown in Fig. 2. It shows also
the observational data for the bulk motion. We can see that the peculiar velocity on
short scales agrees with the observational data only for HDM(1) and CDM+X spectra.
But the bulk motion on scales ~4OHquc is more natural for CDM+X spectrum than for
HDM(1) so far as the former can explain it by the local peak ~1.5 0 height and ano-

ther ~3 0. The data by Collins et al. (1986) do not agree with any spectrum.

Fig.2.The dependence of root me-

an square peculiar velocity V
rms

on filtering radius R for diffe-
rent spectra (character of lines
is similar to that in Fig. 1).
Black <circle shows observable
data by Lubin & Villela (1986),
black square - data by Dressler
et al. (1987), empty square - by
Collinz et al. (1986).
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Comparison of the theoretical value of the bulk motion with the observed one leads
to the conclusion that for explanation of the observed bulk peculiar velocity the
spectrum with additional power relative to CDM-spectrum on scales Sh_1$k;1S20054' Mpe
is necessary.

More important test for any theory of formation of the large-scale structure of
the Universe is a comparison of both the predicted and observed restrictions of ani-
sotropy of cosmic microwave background radiation AT/T(6) for all angle scales. A more
stringent limit on quadrupole component has been got obtained from the cosmic experi-

A o - o
ment "Relic 1": —%(290 )<2-105. For the angle scale at ~8 a lower restriction on

A ° -
CMB anisotropy has been got by Davies et al. (1987): —%(ﬂS )<4-10°. On a scale which

is proportional to the horizon the upper limit has been obtained by the RATAN-600 in
the experiment "Cold": é%(EZO)SLS-lO-S (10 level).
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. ; . A o
consistent with CMB anisotropy —%(922 ), so far as it is exactly on this scale that

In the present paper we would be interested only in the large scale of angles

it is necessary to introduce a change in the CDM-spectrum for explanation of both the
observed cluster correlation function and the bulk motion. It is known that the
Sachs-Wolfe effect is the main contributor to CMB anisotropy on these angle scales.
It can be calculated by means of the method suggested by Doroshkewich & Klypin
(1988). The dependence é%(9) in the region 2°-90° for the analysed spectra is demon-
strated in Fig. 3.

90° 6o0°

~-486
A Fig.3. The angle power spect-
?,\ ra of the cosmic microwave
qra_in. background temperature fluc-
e tuations AT/T for different
A6/ A spectra (character of lines
e is similar to that in Fig.1).
o Arrows show wupper 1limit on
2 =54t AT/T given by: 1 - Klypin

et al., (1987) ("Relic 1"),
2 - Davies et al. (1987), 3 -
Melchiorri et al. (1981),
4 - Fabbri et al. (1980), 5 -
“o.8r | Wilkinson (1983), 6 - Berlin
et al., 1984 ("Cold").

5 3 4 56780 ! 23 30 40 70
We can see from this figure that CDM, HC, DI and HDM(1) models predict rather a low

level of fluctuations of AT/T which does not contradict the observed restrictions.
The model with three sorts of massive neutrinos is already at the limit of its expe-
rimental refutation on large angle scales too. CDM+X spectrum which is suggested by
Bardeen et al. (1987) contradicts the observed restrictions for AT/T on a scale of

~5° and is at the 1limit of restrictions on a scale of ~2°.

CONSTRUCTION OF OPTIMUM SPECTRUM

Thus for explanation of the galaxy and cluster correlation functions, bulk motion
without contradiction to observable restrictions for CMB anisotropy the initial power
spectrum must have the power law P(k)ak ' in the region 3 h™'<k '<100 h' Mpc, must
be sufficiently slightly sloping (P(k)«k®) in region k_1>100h_1Mpc in order to satis-

fy the observational requirement on the value of the bulk motion V and must become
rms
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the scale-invariant (P(k)xk) at k—12103h-1Mpc. From the large number of trial

approximations of such spectrum the following turns out most successful:

P(k)= ak [1+w(k)],

(1+C k+C k' %+c k%)?
1 2 3

)

0.055 [(k /k)°-1], k, S k< k
T(k)= .
Bk) (k/kz)z, k< k.,

2
where k1=3h_1Mpc, k2=100h71Mpc, but C, C,, C_ correspond to CDM- spectrum (Davis et
_ . - ) 3/2 - . :
al., 1985) and are.Cl—1.7/(h QDH), 02 9.0/(h QDH) ; C3 1.0/(h QDH). By analogy with
CDM+X spectrum we marked this spectrum CDM+Z. Galaxy and cluster correlation func-
tions for this spectrum are presented in Fig.1, bulk motion - in Fig. 2 and angle
power spectrum of cosmic background anisotropy - in Fig. 3. Ratio of CDM+Z and CDN

power spectra are shown in Fig. 4. Additional power which is contained in this out-

burst has a value which 1is twice larger than the filtered at ~10H4Mm
CDM-spectrum. 102~
It should be noted that this spectrum .
is most optimum since even insignificant ]
change of it in the region k>0.1h " Mpc
T
leads to increase of divergence between _g
the predicted and observed characteris- Y
0
tics of the large-scale structure of
r;? 10 -
the Universe. e =
£ ]
e
O -
g
o
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10 =4 10-3 102 10 =1 1
k (h/Mpc)

Fig.4.The ratio of CDM+Z to CDM power spectra,
REFERENCES

Bahcall N.A.: 1988, Ann.Rev.Astron.and Astrophys., 26, 5.

Bahcall N.A., Soneira R.M.: 1983, Astrophys.J., 270, 20.

Bardeen J.M., Bond J.R., Efstathiou G.: 1987, Astrophys.J., 321, 28.

Bardeen J.M., Bond J.R., Kaiser N., Szalay A.S.: 1986, Astrophys.J., 304, 15.

Berlin A.B., Gassanov L.G., Gollnev V.J., Korol’kov D.V., Parijskij Yu. N.: 1984
Soobshch. Spets. Astiofiz. Obs., 42, 1.

Bond J.R., Szalay A.: 1983, Astrophys.J., 274, 443.

88


we
Text Box


Collins C.A., Joseph R.D., Robertson N.A.: 1986, Nature, 320, 506.

Davies R.D., Lasenby A.L., Watson R.A., Daintree E.J., Hopkins J., Beckman ],
Sanchez-Almedia J. and Rebolo R.: 1987, Nature, 326, 462.

Davis M., Efstathiou G., Frenk C., White S.D.M.: 1985, Astrophys.J., 292, 371.

Davis M., Peebles P.J.E.: 1983, Astrophys.J., 267, 465.

Doroshkevich A.G.: 1970, Astrofizika, 6, 320.

Doroshkevich A.G., Klypin A.A. : 1988, Mon. Not. R. Astron. Soc., 235, 2, 865.

Dressler A.: 1988, Astrophys.J., 329, 519.

Fabbri R., Guidi I., Melepiorri F., Natale V.: 1980, Phys. Rev. Letters, 44, 1563.

Gnatyk B.I., Lukash V.N., Novosyadlyj B.S.: 1991, Kinematika i Fizika. Nebesnykh
Tel, 7, 6, (in Russian).

Juszkiewicz R., Gorski K., Silk J. : 1987, Astrophys.J., 323, 1, L1-L6.

Kaiser N.: 1984, Astrophys.J., 284, 9.

Klypin A.A., Kopylov A.I.: 1983, Pis’ma v Astron. zh., 9, 75.

Klypin A.A., Saschin M.B., Strukov I.A., Skulachov D.P.: 1987, Pis’ma v Astron.zh.,
3, 259.

Lubin P., Villela A.: 1986, in "“Galaxy Distances and Deviations from Hubble Flow",
Eds.: Madare B.F.,Tully R.S., Dordrecht, D.Reidel Publ.company, 169.

Martinez-Gonzales E., Sanz J.L. : 1989, Astrophys.J., 347, 1, 11.

Melchiorri F., Melchiorri B.0., Ceccarelli C., Pietranera L.: 1981, Astrophys.J.,
250, 1.

Peebles P.J.E.: 1980, Physical Cosmology, les Honches, Session XXX11, Ed.: Balien R.,
Amsterdam, North Holand Publ. Company, 213.

Politzer A.D., Wise M.B.: 1984, Astrophys.J., 285, 1.

Turner M.S., Villumsen J.V., Vittorio N., Silk J., R. Juszkiewicz: 1987,
Astrophys. J., 323, 423.

Vittorio N., Juszkiewicz R., Davis M.: 1986, Nature, 323, 132.

Wilkinson D.T.: 1983, Large-scale Structure of the Universe. Cosmology and Fundamen-

tal Physics, CERN, Geneva, 21-25 November., 153.

89



we
Text Box




