Bull. Spec. Astrophys. Obs., 1996, 39, 131-139

Fast image processing methods for PC:
2. Regression smoothing without loss of resolution

Tsvetan B. Georgiev

Rozhen National Observatory, BG-4700 Smolyan, Bulgaria e-mail: tsgeorg@bgearn.bitnet

Visiting astronomer to SAO of the RAS

Recetved May, 10, 1994; accepted July, 10, 1995.

Abstract.

The image smoothing method by direct digital convolution, corresponding to the

sliding regression surface of 3rd or 5th degree, is described. The coefficients of the convolution nu-
clei in the one— and two—dimensional cases are derived. The C—program, added to the PCVIST A
(Treffers and Richmond, 1989) package, is described. It uses circular window and treats the whole
frame, including the periphery. The fast convolution algorithm, which decreases several times the
number of the arithmetic multiplications is realized. The text of the program is published.

Key words:

'1. Introduction

The practice of image processing, especially the meth-
ods of restoration, needs a good smoothing procedure.
Under reasonable conditions of a narrow smoothing
window 1t should be able to suppress the noise, keep-
ing the resolution unchanged. The method of blurring
by convolution of the frame with the gaussian nucleus
always decreases the resolution.

One natural method for smoothing is the regres-
sion estimation of each pixel value, using the values
of the neighbouring pixels. The method may be de-
scribed as a local regression surface of 3rd or higher
order, which slides across the frame row by row. To
conserve the resolution, the regression must be de-
rived over a small enough data window, centred on
the current pixel. However, the direct performance of
the least squares method (LSM) for each pixel of the
image demands a great amount of computations.

The approach pointed out by Heasley (1984)
avoids this problem with the computer time. The
LSM procedure is linear, and the estimation of the
current pixel value must be found as a linear combina-
tion of the pixels in the window with suitable constant
coefficients. Consequently, the regression smoothing
may be done by means of a convolution transform,
where the coeflicients of the convolution nucleus, de-
pending on the window size, must be preliminarily
derived.

Regression smoothing has been successfully used
by the author for the last few years (Georgiev, 1990;
1991). However, this method has not been fully de-
scribed in the literature till now, and maybe for this
reason is not very popular.

aperture photometry — CCD data processing

The present paper aims to give the theoretical
and practical solutions, making the regression smooth
available to any PC. The formulae for the convo-
lution coefficients in the one- and two-dimensional
cases are derived in Sections 2 and 3, respectively.
The used fast convolution algorithm, based on the
symmetry of the convolution nucleus, is described in
Section 4. The computer program SMOOTH for the
two-dimensional case is described in Section 5. The
examples and the conclusions are given in Sections 6
and 7. The text of the program is given as the Ap-
pendix. The basic conception of realized image pro-
cessing, including the method of circular windows and
sliding frame band, are described in the first paper of
this series, hereafter referred to as Paper I (Georgiev,

1996).

2. One—dimensional case

Let m; be the data row and the odd number W is
the size of the smoothing window, centred on the cur-
rent pixel. We specified the coordinate axis O¢ with
the origin in the point of the current pixel. Thus,
the i—coordinates of the pixels in the window are
-W/2,...,=1,0,1,..., W/2, and the value of the
current pixel is mg. Note that W/2 is the result of
integer type division.

Here we assume the cubic smoothing polynomial
in the form

m=Ag+ Ay i+ Ay - i+ Ay -1°. (2.1)

Simplifying the regression formulae, we use the deno-

© Special Astrophysical Observatory of the Russian AS, 1996


we
Text Box


_

132 GEORGIEV

tations

<ik> = Z ik/W and

G Z W) -,

Hereafter in Section 2 7 changes from —W/2 to W/2.

The free term of the regression (2.1), which will
be the estimation of the current pixel value mg, can
be expressed as

(2.2)

Ag = (m) — Ay - (i) — Ay - (i) — Az - (°). (2.3)

Then the reduced set of the normal LSM equations
has the form

<<i2)i>> - Ay + «iz, 74?» -Ag + <<’1,2) 1,3» T — «2,2’ m))
(,1) - Ay + (1®,32) - Ag + (3, - A = (@, m)

Because of the special choice of the coordinate system
we have

(i) = () = (5,%) = (*,7°) = 0.

Using (2.3) and the second equation of (2.4) we derive
the system of two equations for derivation of Ap :

Ag = (m) — Ay - (i?)

(2.5)

Ag - (i2,12) = (&, m)- (26)
Then the solution for Aq is
Ag = (m) — (%, m)) - (i)/ (i, %) (2.7)

The value of Ag is the estimation of the value of the
current pixel mg. It is found as a linear combination
of the neighbouring pixels. This solution may be ex-
pressed as the one dimensional discrete convolution

Ap=) Ci-mi, (2.8)

and the formula, giving the coefficients Cj, 1s

G = 1/W — ()@ — N/ 2. (29)

The fulfilment of the condition C; = C_; and 3 C; -
m = 1 1s done.

As an example, in the case W = 5, we have C; =
17/35 — i?/7, and the values of the coeflicients are
Co = 17/35, Cl = C-l = 12/3;5 and (Jg - C-—Z e
—3/35. Note, that in the case of W = 3, we have Cp =
1 and C; = C_1 = 0, i.e. the method does not give
useful coefficients. The suitable artificial coefficients,
that smooth, but decrease the resolution, are Cy =
3/4 and Cl = C-l = 1/8

In the case of the 5th degree we have a set of
equations

Ay = (m) — Aq - <’LZ> — Ay - 1”1>
(%,42) - Ay + (32,i%) - Aa = (2, m)  (2.10)
(%, 1%) - A + (2,4%) - Aa = (i, m).

We denote

(2.11)
Then the solution for Ag is similar to that in the case
(2.8), but the coefficients are

Ci=1/W — By - (6% = (i%) + Bz - (i* = (i)).

3. Two-dimensional case

We apply the approach already used in Section 2. Let
the origin of the local coordinate system coincide with
the current pixel. The coordinate axes are Ot, where
i corresponds to the row number, and Oj, where j

- corresponds to the column number. The pixel values

are m; ; and the current pixel has the value mgo.
The regression model of the cubic polynomial sur-
face 1s

m = Ag+Ai-it+Ar-jt+Az-i]
+Ag -2+ Asj+ Ae 1P
3

+A7 i §2+ As i+ Ag - 52

(3.1)

With simplification of the formulae, as in Section
2, we denote

(ik> = ZZZ}C/N and

() =3 3 F =N B

1

In Section 3 i and j acquire all possible values in
the window (with size of W) and N is the number of
pixels in the window. The reduced LSM system now
consists of 9 equations. Because of the special choice
of coordinates many regression sums, as 1n (2.5), oc-
cur equal to zero. Then the system of equations for
Ay, that corresponds to (2.6), is

Ao = <7’}’I,>n’ /’4‘\4 . <L2> —" AAFS . ]'2, .
Ag - (2, 43) + As - (%, 52) = (@, m)

Ay (572 + As - (55 4%) = (5, m)-

However, ((i%,4*) = (4% 7*)
{(5%,4%)) solutions for Ag are

(3.4)

Thus, the coefficient of the convolution nucleus is
expressed as



we
Text Box

we
Text Box


FAST IMAGE PROCESSING

In the case of the surface of the 5th degree we have

The reduced system of regression equations now
consists of 20 equations. Again, because of the spe-
cial choice of the coordinate system, many regression
sums occur equal to zero. We denote the nonzero sums
as follow:

S1o= (i%,4%)

Sy = (i%,5%)

Sz = (2,5%,82)

Sy = (i%,5%,2,5%)
S5 = (i2,i%)

Ss = ((2,5°)
Sro= (i%,5%,4%)

Sy = ((i,5%)

S = (% %).

Let denote also:

Sz = S1+ 5,

Ss6 = S5+ S

Ss9 = Sz+ Sy

Dy = S12-84—2-53-853
Dy = Sgg-S4—2-5;-5;
Dy = Ss6:S4—2-53-5;

D = Di1-Dyy— Diyy- Dy
Dy = (Day-S3— Diy-S7)/D
Dy = (Di2-S7— Diy3-S83)/D
A1 = Ap + Ag

Ay = Ay

As = Aps+ Ago.

~ Then the simplified system of regression equations
is

512‘ a1+2 S’% A2+556 A3:« ,Z»—f—« »

S A1+ S84 - Ao+ Sy - AW_((’»Jvm))

556 A] + 2 - S? A2 + 589 A? = « 4yz> + <.727 »
Ao = (m)— (% + %) - A = (%) - g — (i* 4 %) - Ao,

The solution for Agg is the regression estimation of
the value of the current pixel mgg. It may be presented
as the convolution

Ago :ZZ Ciy » iz 5
t g

where ¢ and j run inside the current position of
the smoothing window. The convolution coefficient
has the form
Cij =1/N—By-(®+5° -2 (i )+
By (i~ ()~ By (41 2 (),

where the coefficients By, B, and Bz may be written

133
By = ((1)-Sa—(i*4%) - S5 Dya/D+
+((i - 5%) - Sz = (1*) - S4) - D13/ D
By= 2-(((i%5%) - S5 — (%) - 8s) - Di+
+((& - 52) - S7 = (1*) - S4) - Do + (i - %)) /S
Bs = ((i*) -S4~ (- 3%) - Sv - D1/ D+
+({#® - 42) - S5 — (%) - Sa) - D1a/ D.

The formulae for the convolution coefficients are
efficient if W > 2, in the case of the 3rd degree, and
if W > 4, in the case of the 5th degree polynomial.
In all cases the sums of the coefficients are equal to
1.

The values of the convolution coefficients, corre-
sponding to the 3rd and 5th degree surface, for circu-
lar windows with sizes 5 and 7 pixels, are given below.
These are parts of the convolution nuclei, where the
upper left coeflicient in each case corresponds to Cyg
and the local coordinates i and j grow up to down
and to right, respectively.

3rd degree, W = 5

0.2119  0.1612  0.0090
0.1612  0.1104 -0.0418
0.0909 -0.0418
5th degree, W = 5
0.6906  0.2467  0.0125
0.2467 -0.0997 —0.0411
0.0125 —0.0411
Jrd degree, W =7
0.1116  0.0971  0.0536 —0.0188
0.0971  0.0826  0.0392 —0.0333
0.05636  0.0392 —0.0043
—0.0188 —0.0333
5th degree, W = 7
0.2984  0.2011  0.0027 —-0.0162
0.2011  0.1176 -0.0394  0.0107
0.0027 —-0.0394 —0.0723
—0.0162  0.0107

More detailed profiles of two convolution nuclei in dif-
ferent cases, when the window size is W = 21 pixels,
are given in Fig.1. It should be pointed out, that neg-
ative coeflicients appear on the edges of the nuclei,
corresponding to regression smoothing. The present
nuclei look like the nuclei used for direct restoration of
images (see p.e. Frieden, 1975). If the size of the win-
dow is small enough, the regression smoothing does
not decrease the resolution. Moreover, using sliding
surface of the 5th degree, we decrease the FWHM of
the stars by about 5-6%.

4. The fast convolution algorithm

Let the frame (i.e. the whole image that rmust be
processed) be presented as a matrix of numbers and

[


we
Text Box


134 GEORGIEV

(04 FrTTT e T O O T e PO T ey <
S I 7, | N | 7
%’é o.ozé » ”7 \\EV/ ///
= NN \//QN///’C NN
] 0.00 ////K\//,ﬁ/j

| 7 \

%

'001 NN N N IS TSI AN NS AN RN

2 4 6 8 10
radius, pixels

O T T T T T

Figure 1: Comparison of the profiles of the convolu-
tion nucleus with W=21 pizels corresponding to the
surface of the 3rd degree (circles), the 5th degree (iri-
angles) and gaussian with width of 21 pizels (asterisk
Using the 5th degree and window 4< W<1.5 (FWHM)
we reach the decrease of the FWHM of the frame of
about 5%

m;; be the value of the current pixel. At the begin-
ning we will use a square window with the size W,
where W is an odd integer. This window can move
across the image row by row. In each fixed case the
central pixel of the window coincides with the cur-
rent processed pixel. Let the numbers of Cy;, where
k,l=-W/2 ...,0,...,W/2, be the convolution coef-
ficients. Under these conditions the two—dimensional
convolution, that gives new value n;; for each current
pixel, may be expressed as the double sum

w/2 w/2

Ng; = g E Cri-mi_k j—1.

k=—w/2l=—w/2

(4.1)

The expression of (4.1) in the C-language has the
form
s=0; for(k=-w/2;k<=w/2;k++)
for (I = —w/2;1 <= w/2;1+ +)
s+ = clk][l] * m[i — k][j — {].

Here the sum s, which collects the new values for the
current pixel, and the convolution coefficients c[ ][ ]
are floating point numbers, all other numbers are in-
teger.

The direct realization of the convolution (4.1)
leads to a great number of computations. About W

7.

A\

Figure 2: The symmetry of the pizels of the convolute
nucleus with the diameter W = 9 pizels. The blank
pizels have octal symmetry, the hatched pizels (situ-
ated on the azes or diagonals) have quadrant symme-
try and only the double hatched central pizel 1s unique.

floating point multiplications and W floating point
additions must be made for each pixel of the frame.
The contemporary PCs are fast enough, but for big
images we must use the fastest of the available algo-
rithms.

Following the recommendations of Dudgeon and
Mersereau (1984), we explore the symmetry of the
convolution nucleus. Preliminarily we make the inte-
ger summing of the pixels that must be multiplied by
equal coefficients, then multiply the sum by the corve-
sponding coefficient. This approach reduces the num-
ber of multiplications 4-7 times, and the gain grows
with increasing W.

One example of the circular window case with the
diameter W = 9 is given in Fig.2 (the windows with
W < 9 are shown in Paper I). Only the central [ is
unique. The axial and diagonal pixels have quadrant
symmetry and the others have octal symmetry.

Based on the symmetry, the present practical re-
alization of the two dimensional convolution with cir-
cular window occurs few times faster than the direct
method. In the direct method we must make 69 multi-
plications and 69 additions for each pixel of the frame.
Using the symmetry we will make only 13 floating
point multiplications, when the preliminary summing
may be done by the integer arithmetic.

Let us turn back to the case of the square window.

Using the symmetry mentioned above we may apply
one complicated but faster C-language expression of
the convolution procedure (4.1) as follows:



we
Text Box


FAST IMAGE PROCESSING 135

s = ¢[0][0] * m[i][j]; /* central pixel %/

for (k=1; ki=w/2; k++) { /* 4 axial pixels %/

Is = mi-k|(j] + m[i+k][j] + m[i][j-k] + m[i][j-k];

s += c[k][0] * Is;

for (I=1; I<=w/2; I4++) { /* 4 diagonal pixels */

Is += mi-k|[j-]] + mf[i-K][j+] + m[i+k][-] +
m[i+k][j+1];

if(!=k) { /* other 4 symmetric pixels */

Is += mfi-l]j-k] + m[i-][j+k] + m[i+][j-k] +
miH]+K];)

s 4= c[k][1] * Is.

Here the floating point values s and c[ ][] are the
same as in the previous example, and all other num-
bers are integer. The sum ls must be long integer
type.

Practical realization of the convolution loops men-
tioned above in the program SMOOTH , given in Ap-
pendix, is more complicated. It reflects the use of the
circle window with the system of row limits Iw[ ] and
frame band with position numbers of the processed
image rows pn[ | (see Paper I).

5. The program SMOOTH

The program SMOOTH is made in the compact en-
vironment of Microsoft C-language, version 5.1, and
PCVISTA (Treffers, Richmond 1989). It processes
FITS frames with the integer type of pixel values.
Each single call of the program performs smoothing
of one specified frame. The input arguments of the
program are the input file name, the output file name
and the window diameter W. The general algorithm
and the designations are the same as in the program
MEDFIL (Paper I).

When the image dimensions are 400 x 500 pix-
els, the processing times of the program SMOOTH
with W =5 W = 15 and W = 25 on a 40 MHz
IBM PC/AT 386 DX are 14 and 88 and 190 seconds,
respectively. The present realization of the program
SMOOTH demands a 56 kb processor memory.

6. One example

The possibilities of convolution smoothing for eluci-
dating the shape of the extended object, as well as for
revealing of faint objects without loss of resolution,
are shown in Fig. 3. The object is the dwarf irregu-
lar galaxy DDO46 = UGC3966, which has low surface
brightness. A part of the B — CCD image, obtained
by the 6 m telescope, is used. The exposure time is
900 sec, the seeing is about 1.6 arcseconds (8 pixels),
and the dimensions of the frame are 580 x 400 pixels.

The standard preliminary processing of the frame,
including subtraction of the bias and dark frame, flat

fielding, etc., is done by PCVIST A and a few auxil-
lary programs of the author.

7. Remarks

The method of regression smooth is a very useful tool
for different situation in image processing, and espe-
cially before image restoration. To keep the resolution
unchanged the window diameter must be smaller than
the seeing.

The author expresses his gratitude to Dr. 1.D.
Karachentsev, Dr. N.A. Tikhonov and Dr. A.I. Kopy-
lov for the useful discussions, as well as G.G. Ko-
rotkova for the help in the preparation of this paper.
The author is grateful also to the administration of
SAO for the excellent conditions in which this work
was finished.

This paper is a part of the investigations, sup-
ported by the grant F-342/93 of the Bulgarian Min-
istry of Education and Science.

References

Dudgeon D.E., Mersereau. R.M.: 1984, Multidimensional
Digital Signal Processing, Prentice-Hall, Inc., Engle-
wood Cliffs (in Russian: 1988). ,

Frieden B.R.: 1975, in Huang T.S., ed., Topic in Applied
Physics, 6, Picture Processing and Digital Filtering,
Springer-Verlag (in Russian: 1979).

Georgiev Ts.B.: 1990, Astrofiz.Issled. (Izv. SAO), 30, 127.

Georgiev Ts.B.: 1991, Astrofiz. Issled. (Izv. SAO), 33,
213.

Georgiev Ts.B.: 1996, Bull. Spec. Astrophys. Obs., 39,
124, (this issue).

Heasley J.N.: 1984, Publ. Astr. Soc. Pacific, 96, 767.

Trefters R.R., Richmond M.W.: 1989, Publ. Astr. Soc.
Pacific, 101, 725.

n


we
Text Box


136 GEORGIEV

Figure 3: Smoothing of the galazy DDO46, observed with the 6 m telescope (see the text): upper part — the
original, down part — the result of the program SMOOTH with the window diameter W =9.


we
Text Box


FAST IMAGE PROCESSING 137

/e e - SMOOTH - Fast
Tregression smooth, general case, v.1.0 nov 93 (the convolute nucleus
corresponds to 3rd or 5th degree surface) Ts.Georgiev, Rozhen

| Observatory, BG-4700 Smolyan, Bulgaria

#include <stdio.h>

#include <math.h>

#include "pcvista.h"

#include "fits.h"
#define MAXNC 600 /* max image width in pixels */
#define MAXFW 15 /* max width of the window */

#ifdef PROTO

void main(int, char *x);

#endif

void main (argc, argv)
int argc; char *argv[]l; { char *gotit; FITS_HANDLE finp,fout;
static int r[MAXNC], pn[MAXFW]; /* row and its pos.number */
static int m[MAXFW][MAXNC]; /= memory for image band */
static int 1w[MAXFW/2+1];/* k-limits of the circular window */
static double c[MAXFW/2+1][MAXFW/2+1]; /* convolute nucleus */
static int nr,nc,fw,ca,hw,i,ii,ic,j,k,l,lj;
static int n1,n2,n3,n4,iinp,iout,np,rr;
static double d,a2,a22,a4,c0,cl,a6,a8,a42,a62,a44,di,dj,sum,dn;
: static double s1,s2,sB,s4,55,36,57,58,59,512,556,s89;
| static double d11,d22,d12,d10,d20,b1,b2,b3,dn=32767.; long ls;
fu=7; ca=2; if (arge < 3) { Usage:

printf(“Usage: SMOOTH inp[.fts] out[.fts] [w=W] [c=C] \n");
printf("W=2/3/4/5... - window diameter; default W=Yd;\n",fw);
printf("C=0/1/2 - cases of smoothing; default C=Yd;\n",ca);
printf(“cases: 0: average, 1: 3rd degree, 2: 5th degree;\n");
printf("max image width: %d, max window diam: %d" ,MAXNC,MAXFW) ;
return; }
if(arge>3){ gotit=find("w",argv[3]); fw=(int) (evaluate(gotit));}
if(arge>4){ gotit=find("c",argv[4]); ca=(int) (evaluate(gotit));}

if (fw<2| [ fw>MAXFW) goto Usage; if(ca<0]||ca>2) goto Usage;
if(ca==2&&fw<4) fw=4;
/* == the limits lw and the area np of the circle window —— */

hw=fw/2; if(hw*2==fw) rr=hw+hw; else rr=(int) ((hw+0.5)*(hw+0.5));
| np=1; for (k=0; k<=hw; k++) { 1lw[k]=0;
i for (1=0; 1l<shw; 1++) if (k*k+l*l<=rr) {

lulk]=1; if (k>0) np+=4; } } fw=2*hw+1; dn=(double)np;

/¥ e THE COEFFICIENTS FOR THE CONVOLUTION —---———nn */
if (ca==0) { /* ——————o case of averaging -—————---——- */
for (i=0; i<=hw; i++) for (j=0; j<=1lw[il; j*++) cl[il[jl=1./dn;}
if (ca==1) { /% ————u case of 3rd degree —————————- */

if (fw==2) { c[0][0]=0.5; c[01[1]=c[1]1[0]=0.125; sum=1.; }

if (fw>2) { a2=0.; a4=0.; a22=0.; for (i=-hw; i<=hw; i++) {
ii=i*i; ic=abs(i); for (j=-1lwlicl; j<=lw[icl; j++) {
a2+=(double)ii; a4+=(double) (ii*ii); a22+=(double) (ii*j*j); } }
a2/=dn; a4/=dn; a22/=dn; d=(a4+a22-2.*a2+%a2)*dn;
c0=(a4+a22)/d; cl=a2/d; sum=-c0; for (i=0; i<=hw; i++) {
ii=i*i; for (j=0; j<=lw[il; j++) { clil1[j] = cO-c1*(ii+j*j);
1£(1==011j==0) sum+=2.*c[i1[j]; if(i!=0&&j!=0) sum+=4.*c[i] [j];
if(j<=8) printf ("¥%8.4f", c[i1[31); } printf("\n"); }
printf("Sum of the coefficients: %8.6f\n",sum); } }

e


we
Text Box


B R N ———————.

138 GEORGIEV

if (eas=2) { /& ——mm=sessss case of 5th degree ——————————- */
/% S1=<<ixi,i*i>> S2=<<i*i, j*j>> S3=<<i*i*j*j,iki>>
SA=<<ikikj*j,i*ki*kj*j>> SB=<iki,ikikiki>> SB=<<iki, jrj*j*j>>
ST=<<i*i*j*j,ikiki*i>> S8=<<ikikiki, jkj*xj*]>>
SO=<<ikikiki,i*i*ixi>>
bl = (a2+s4-a22+s3)*d22 + (a22+s7-ad*s4)*d12;
b2 =2.%(a22 + (a22*s3-a2+%s4)*dl + (a22*sT-ad*sd)+*d2)/s4;
b3 = (ad4*sd4-a22*sT)*d1l + (a22*s3-a2%s4)*d12;
cli,jl = 1/N - bi*(di+dj-2.*a2) - b2+*(di*dj-a22)
- b3*(di*di+dj*dj-2.%*a4d); */
a2=a4=a6=a8=0.; a22=a42=a62=a44=0.;
for (i=-hw; i<=hw; i++) { di=(double) (i*i); ic=abs(1i);
for (j=—lwlicl; j<=lwlicl; j++) { dj=(double) (j*j);
a2+=di; a4+=di*di; ab+=di*dixdi; a8+=di*di*di*di; a22+=di*dj;
a42+=di*di*dj; a62+=di*xdi*di*dj; ad4+=di*di*xdj*dj; T3
si=ad4-a2%a2/dn; s2=a22-a2%a2/dn; s3=a42-a2*a22/dn;
s4=a4d4-a22%a22/dn; s5=a6-a4*a2/dn; s6=a42-ad4*a2/dn;
s7=a62-a22%a4/dn; s8=a8-a4*asd/dn; s9=ad44-ad*a4/dn;
s12=s1+s2; s56=s5+s6; s89=s8+s9; a2/=dn; a22/=dn; a4/=dn;
di1=s12%s4-2.*s3%s3; d22=s89%s4-2.%sT*sT; d12=s56%s4-2.%s3%s7;
d=d11*d22-d12%d12; di11/=4; d22/=4; di12/=4;
d10 = d22*s3-d12*s7; d20 = d11*s7-d12*s3;

b1 = (a2*s4-a22*s3)*d22 + (a22%sT-a4*s4)*d12;

b2 =2.%(a22 + (a22%s3-a2*s4)*d10 + (a22*s7-ad*s4)*d20)/s4;

b3 = (ad*s4-a22*s7)*d11 + (a22*s3-a2*s4)*d12; sum=0. ;
for (i=0; i<=hw; i++) { di=(double) (i*1i);

for (j=0; j<=1lwlil; j++) { dj=(double) (j*j); c[il[jl=1./dn;
c[i][j]—:bi*(di+dj—2.*a2)+b2*(di*dj—a22)+b3*(di*di+dj*dj—2.*a4);
if(i==0]1j==0) sum+=2.*c[i]1[j]; if(1i'=0&&j'=0) sum+=4.*c[i]l[jl;
if(j<=8) printf("%8.4f",c[i][j]); } printf("\n"); }
sum-=c[0]1[0]; printf("Sum of the coeff: %8.6f\n",sum); }

e preparation —--------==------TT */
finp=fits_open(argv[1],”r”,&nr,&nc); if (nc>MAXNC)goto Usage;
foutzfits_open(argv[QJ,"w”,&nr,&nc)j /* out.file */

printf ("%dx%d w="d hw='d c=%d np=%d; " nr,nc,fw,hw,ca,np);
if (hwx2==fw) fw=fw+ti;
K SR MAIN LOOP BY FRAME ROWS —--————————=——~ */
for (i=-hw; i<nr+hw; i++) {
iinp=i; /#* inp.row number for the inner part of the image */
if (1<0) iinp=nr+i; /* input row number for upper margin */
if(i>=nr) iinp=i-nr; /* input row number for lower margin */
iout=i-hw; /* output row number */
for(k=1;k<fw;k++) pn[k-1]=pn[k]; /* rotate the pos.numbers */
k=i+hw; np=k-k/fw*fw; pn[fw-1]l=np; /¥ pos.num. of inp.row */
fits_get_data (finp,iinp,0,r,nc); /* READING */
for(j=0;j<nc;j++)mlnpl [hw+jl=r[jl; /* save in memory m[10] */
for(j=0;j<hw;j++){ n[np] [j1=r [nc-hw+jl; m[np] [nc+hw+jl=r[jl; }
if (i<hw) goto Next; np=pn[hw]; /* pos.nun. of out.row */
A LOOP IN THE ROW —-———-————==——="7~ */
for (j=hw; j<nc+hw; j++) { sum=c [0] [0] * (double)m[npl [j];
for (k=1; k<=hw; k++) { 1j=1lwlkl; ni=pnl[hw-k]; n2=pn[hw+k];
1s=m[n1]1[j]1; ls+=m[n2]1[j]; 1s+=m[np] [j-k1; 1s+=m[np] [j+k];
sum+=c [k] [0]*(double) (1s); if(k<1j) 1j=k; for(l=1;1<=1j;1++){
1s=m[n11[j-1]; ls+=m[n1][j+1]; 1s+=m[n2] [j-1]; 1ls+=m[n2][j+1];
if (1'=k) { n3=pn[hw-1]; n4=pn[hw+l];
1s+:m[n3][j—k];1s+=m[n3][j+k];1s+=m[n4][j—k];ls+=m[n4][j+k];}
sum+=c [k] [1]*(double)ls; } }



we
Text Box


FAST IMAGE PROCESSING ' 139

if (sum<-dm) sum=-dm; if (sum>dm) sum=dm;

if (sum<0.) r[j-hwl=(int)(sum-0.5);

else r[j-hwl=(int) (sum+0.5); } /* end of j */
/¥ OUTPUT ——————m——— o */
Next: if(iout>=0) { fits_put_data (fout,iout,0,r,nc);
if(iout/100%100==iout) printf("%d ",iout); } } /* end of i */
fits_close (finp); fits_close (fout); }



we
Text Box




