Bull. Spec. Astrophys. Obs., 1996, 39, 140-145

B R R R ———

Fast image processing methods for PC:
3. Partial restoration by intensified Richardson-Lucy

method

Tsvetan B. Georgiev

Rozhen National Observatory, BG-4700 Smolyan, Bulgaria, e-mail: tsgeorg@bgearn.bitnet,

Visiting astronomer to SAO of the RAS

Received May, 10, 1994; accepted July, 10, 1995.

Abstract. The purpose of the intensified Richardson-Lucy method (IRLM) is to reach a
resolution gain of about 1.5 after 5-6 iterations. The improved image I(n + 1), obtained af-
ter the iteration no. n, depends only on the current image I(n) and the convolution nucleus
C:I(n+1)=((I(n)/(I(n)*C)*C)-I(n), where the division (/) and multiplication (-) are done
point-wise, and (*) means two-dimensional convolution. The IRLM is few times faster than the
classical Richardson-Lucy procedure. The IRLM is realized in the form of a C-program written
in a limited version (but the fastest), when the whole frame is stored in the processor memory.

The text of the program is published.

Key words:

1. Introduction

Following the discussion of Frieden (1975), a linear
and shift-invariant image formation system with ad-
ditive noise, giving the observing image Iy, can be
modelled mathematically by two-dimensional convo-
lution (denoted by *) plus noise:

Ih=0xS+N. (1)

Here O is the object, S is the point spread func-
tion (PSF) and N is the noise. All functions are two
dimensional.

Richardson (1972) and Lucy (1974) found an iter-
ative procedure, giving a sequence of images I,,, which
are improved estimations of the object O. Following
Heasley (1984), we can express the iterative solution
of (1) as

[o
L% 8

Here Iy is the raw image, and multiplication and
division are done point-wise. This is the Richardson-
Lucy method (RLM). It is the subject of different
discussions and development (White, 1993; Starck &
Murtagh, 1994).

The RLM has been widely explored in image
restoration because of its useful characteristics. White
(1993) pointed them out as follows:

Ing1 = (%8~ I (2)

1. The RLM converges to the maximum like-
lihood solution for Poisson statistics in the data

aperture photometry — CCD data processing

(White, 1993), which is appropriate for astronomical
CCD data.

2. The RLM forces the restored image to be non-
negative and conserves global and local flux at each it-
eration. This means that the restored image has good
photometric linearity.

3. The image, restored by the RLM, is robust
against small deviation of the used PSF toward true
PSF.

4. The RLM requires significant, but manage-
able, computer time, representing a reasonable com-
promise between quick (but unsatisfactory) methods,
based on Wiener filtering, and much slower (but usu-
ally superior) maximum entropy method.

2. The intensified Richardson—Lucy
method

Our experiments with procedure (2) show that:

1. In the case of a relatively low ratio of signal to
noise (between 50 and 200), we can really make only
partial restoration. This means that the restoration
gain (RG), the relative decrease in the full width at
half maximum (FWHM) of the stellar images, may
be about 1.5.

2. An analysis of the procedure (2) shows that
each iteration amplifies the faint images which are in
the same spatial scale as the PSF. So, bearing in mind
(1), we conclude that the true PSF may be changed

© Special Astrophysical Observatory of the Russian AS, 1996

we
Text Box

FAST IMAGE PROCESSING METHODS FOR PC 141

by one two-dimensional Gaussian with suitable width.

3. We found that the first iteration which occurs
is the most efficient. Its RG is usually 1.05-1.10, when
the RG of the next iteration is 2-3 times lower and
the process is slowly convergent. It should be noted
that the result of the first convolution is an image
with pixel values close to 1. We are forced to store it
in the integer memory after subtraction of 1 and mul-
tiplication by 10,000. However, the Gaussian approx-
imation of the PSF and the arithmetic errors, when
we use only integer memory, probably decreases the
speed of the RLM convergence.

The upper mentioned considerations lead us to the
intensified Richardson-Lucy method (IRLM), where
each next image I,,1; depends only on the previous
image I, and the PSF, modelled by the Gaussian G:

In
I, «G

In+1 = (* G) d In (3)

Usually the RG of the IRLM grow up with in-
creasing iteration number, i.e. the process (3) is non-
convergent. However, when the number of the iter-
ation is only 3-5, the RG of the IRLM is 1.3-1.6.
Thus, the IRLM is a number of times faster than the
RLM. Moreover, the IRLM may be easily realized as
a program, where only one input/output image-file is
necessary, where the computer memory may store the
intermediate image.

3. The algorithm and program IRLM

The program IRLM is created in the environment of
the language C 5.1 of Microsoft. Its input parameters
are an input/output integer file, a desired number of
iterations, a diameter of the convolution window, a
seeing (that will be used as “2.sigma” for the Gaus-
sian), and coordinates and a size of the stellar area
for estimation of the RG. The text of the program is
given as an Appendix to this paper. A description of
how to use the window limits and the fast convolu-
tion procedure, based on the octal symmetry of the
convolution nucleus, is given in the previous papers
of Georgiev (1996a,b).

The algorithm of the program IRLM is given be-
low: some of the denotations are used as follows: Fn is
the input/output file, In is the image that is current
in the iteration no. n, Im is the image that is currently
stored in the computer memory, Ic is the current re-
sult of the convolution, and m[][] is the computer
memory that is able to save one whole image.

Note that the dimension of m[][] must be (N R+
W —1) x (NC + W — 1) pixels, where NR and NC
are the numbers of the rows and columns of the pro-
cessed image, and W is the diameter of the circle
convolute window. The additional periphery — W/2

rows or columns by each side of the image — is nec-
essary for processing the whole image. More detailed
descriptions of the image processing principals used
in the program IRLM (as in the previously published
programs of the author) are given in the papers of
Georgiev (1996a,b).

The sequence of actions in the program IRLM may
be presented as follows.

3.1. Preparation

e Open the file Fn for reading;

o write the content of Fn in the left upper part
of m [][], as Im;

e close the file Fn;

e initialize the iteration number: n=0.

3.2. Convolutions

o Increase the iteration number: n=n+1;

e shift the image In to the central part of the
memory ml][J;

e fill the peripheral margins, using the rows and
columns from the opposite side of the image;

e open the file Fn for writing;

e read one row of the image In from Fn for the
future division or multiplication;

e make the convolution for each pixel: Im * C =
Ic;
Case of convolution 1: Im = (In/Ic-1)-10000;
Case of convolution 2: Im = (Ic/10000+4-1)-In;
write Im in Fn;
close the file Fn;
else — end of the process.

One important distinction of the IRLM is that
the intermediate image Im is stored currently in the
memory m[][| when the convolution process goes
on. It is possible, even in the use of square convo-
lution window. Note that when the program finishes
the computation (p.e.) of the first pixel (W/2, W/2)
of the image Im (centred in m][][]), the first pixel
(0,0) of the memory m[][] is already free for storing!
For this reason after each convolution the image Im
is centred.

The processing time for one IRLM iteration with
W = 35, if the image dimensions are 400 x 580 pix-
els and a 40 MHz IBM PC/AT 386 DX is used, is
about 23 min. The whole memory used by the IRLM
program 1s 560 kb.

4. One example

An example of applying IRLM is given in Fig.1. The
object is the dwarf irregular galaxy UGC 4115 twice
observed by CCD on the 6-m telescope in the B band.
The scale 1s 0.2 arcsec by pixel, the exposure times

we
Text Box

142 GEORGIEV

Figure 1: Application of the IRLM on the galazy UGC 4115. Upper part: raw vmage with FWHM 2.1 arcse
middle part: restored image where the FWHM 1s 1.6 times belter; down part: raw image with FWHM of 1.0

arcsec.

we
Text Box

FAST IMAGE PROCESSING METHODS FOR PC 143

are 600 s, and the seeings are about 2.1 and 1.0 arc-
sec. Standard processing of the images (bias and dark
frame subtraction, flat fielding, etc., including the
mapping) is done with help of the PCVISTA (Tr-
effers, Richmond, 1989) and some auxiliary programs
of the author. The IRLM demonstration is made with
help of the residual images, obtained with the median
filtering program MEDFIL (Georgiev, 1996a), and is
smoothed with the fast regression method, realized in
the program SMOOTH (Georgiev, 1996b).

The “raw” and restored images are given in the
upper and middle parts of the Fig.1, respectively. The
RG is about 1.6 times. Another CCD image under
seeing of 1 arcsec is given in the down part of Fig.1.

5. Concluding remarks

It should be noted, that the IRLM, like the original
RLM, conserves the shape of the objects, if they are
different from the shape of PSF. The IRLM is several
times faster than the classical RLM procedure, so it
turns out to be a very useful tool for partial restora-
tion. The author considers that the IRLM, as well as
the program IRLM, can be developed and included
in any software.

It should be especially emphasized that the circu-
lar window, corresponding to the shapes of the ob-
jects in the frame, gives better results in the IRLM
than the square one. That is why, we do not use
the fast separable convolution where the image can
be convoluted into two one dimensional convolutions
(Heasley, 1984).

The author is grateful to Dr.I.D. Karachentsev,
Dr. N.A. Tikhonov and Dr. A.I. Kopylov of the Spe-
cial Astrophysical Observatory (SAO) of the Russian
Academy of Sciences for their discussions, to G.G.
Korotkova for the help in the preparation of this pa-
per, as well as to the administration of SAO for the
excellent conditions in which this work was finished.

This paper is part of the investigations supported
by grant F-342/93 of the Bulgarian Ministry of Edu-
cation and Science.

References

Frieden B.R.: 1975, in Picture Processing and Digital Fil-
tering, ed.: T.S. Huang, Springer—Verlag. (in Russian:
1979).

Georgiev Ts.B.: 1996a, Bull. Spec. Astrophys. Obs., 39,
124, (this issue).

Georgiev Ts.B.: 1996b, Bull. Spec. Astrophys. Obs., 39,
131, (this issue).

Heasley J.N.: 1984, Publ. Astr. Soc. Pacific, 96, 767.

Lucy L.B.: 1974, Astron. J., 79, 745.

Richardson B.H.: 1972, J.Opt.Soc.Am., 62, 55.

Starck J.-L., Murtagh F.: 1994, ESO scientific preprint
No.978.

Treffers R.R., Richmond M.W., 1989, Publ. Astr. Soc.
Pacific, 101, 725.

White R.L.: 1993, Restoration, Newsletter of STScI’s Im-
age Restoration Project, 1,11.

—

we
Text Box

144 GEORGIEV

Appendix

/* ———— IRLM - Intensified Richardson-Lucy
Method, v.1, Feb 94 Purpose: partial image restoration J = ((I/(I*c))*c).I
where I and J are the images before and after iteration;
"." and "/" mean point-wise multiplication and division;
"x" means convolution; '"c'" is a gauss’ convolution nucleus
Georgiev Ts.B., Bull. SAO, v.39; tsgeorg@bgearn.bitnet
Rozhen Observatory, BG-4700 Smolyan, Bulgaria -—-——----————- */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define MAXNR 300 /* max image lenght in pixels */
#define MAXNC 200 /* max image width in pixels */
#define MAXFW 15 /* max window diameter */
void main (argc, argv)
int argc; char *argv[]; { FILE #fn;
static int huge m[MAXNR+MAXFW-1] [MAXNC+MAXFW-1]; /*image Im */
static int r[MAXNC],1lw[MAXFW/2+1]; /+*image row,window limits */
static double c[MAXFW/2+1][MAXFW/2+1]; /* convolute nucleus */

static int nr,nc,i,j,k,np,fw,hw, 1,11,it,ni,conv; long 1s;
double s,ss,cl,c2,rad,gw, d1=32767.,dc=10000.,pi=3.14159;
ni=5; gu=4.; fw=MAXFW, /* DEFAULTS */

if (argc<4) { Use: printf(
"Usage: IRLM file nrows ncols niter sgaus wdiam\n");
printf("Intensified Richardson-Lucy Method, v.1, Feb 94;\n");
printf("file: integer image-file without heder;\n");
printf("nrows & ncols: lenght and width of the image (pix);\n");
printf("niter: desired number of iterationms, DEF: %d;\n",ni);
printf("sgaus: gaussian width(pix), (0.8*FWHM), DEF: %2.1f\n",gw) ;
printf("wdiam: window diam.(pix),(10#FWHM), DEF: %d\n",fw);
printf(“ max image: %dx%d; max window: %d",MAXNR,MAXNC,MAXFW);
return; }
nr=atoi(argv[2]); nc=atoi(argvl[3d]); if(argc>4) ni=atoi(argv[4]);
if(argc>5) gw=atof(argv[5]); if(argc>6) fw=atoi(argv[6]l);
if (nr>MAXNR| |nc>MAXNC| | fw>MAXFW) goto Use;
/e Limits of the circle convolute nucleus —------- */
hw=fw/2; if (hw*2==fw) ll=hw¥hw; else 11=(int) ((hw+.5)*(hw+.5));
np=1; for (k=0; k<=hw; k++) { lw[k]=0; for (1=0; 1<=hw; 1++)
if (k*¥k+1%1<=11) { 1lwlk]l=1; if (k>0) np+=4; } } fw=2%hu+l;
[* ————m—mm Gaussian nucleus for partial restoration ----- */
s=gw/2.; cl=1./s/2./pi; c2=-1./2./s; ss=0.;
for (k=0; k<=hw; k++) { for (1=0; 1<=hw; 1++) c[k][1]=0.;
for (1=0; 1<=1w[k]; 1++) { rad=(double) (kxk+1*1);
c[kl[1]=cl*exp(c2*rad); if(1'=0)ss+=4.*c[k][1];}} ss+=c[0][0];
s=0.; for (k=0; k<=hw; k++) for (1=0; 1<=lw[k]; 1++) {
c[k1[1]/=ss; if(1!'=0) s+=4.*c[k]1[1]; } s+=c[0][0];
/* printf("Coef: init.sum = %6.4f; morm.sum = %6.4f\n",ss,s);
for (k=0; k<=hw; k++) { for (1=0; 1<=1lw[k]; 1++)
if (1<9) printf ("%7.4f ",c[k]1[1]1); printf("\n"); } */
[* e Writing the inp.file in m[1[] as Io -———=——--- */
fn = fopen (argv[i],"rb"); for(i=0; i<nr; i++) {
fread (r,2,nc,fn); for(j=0; j<nc; j++) m[il[jI=r[j];} fclose (fn);
printf("%dx%d ni=Yd gw=%3.2f fw=)d np=Yd; RESTORATION:"
nr,nc,ni,gw,fw,np);
/¥ ——m—m CONVOLUTIONS 1 and 2 —-—————————————- */
it=0; Next_iter: it++; /* iteration number */

’

we
Text Box

FAST IMAGE PIMDCHESSBV(?AlEﬂU?CH)S.FCU%IW?

if (it/2#%21=it) conv=i; else conv=2; /* convolution number */
if (conv==1) printf("\niter Y4 ",it/241);
/* e centering the image in the memory m[][] ------ */

for(i=nr—1;i>=0;i——)for(j=nc—1;j>=0;j——)m[i+hw][j+hw]=m[i][j];
/* - enlarging the periphery by adding left and right margins */
for (i=hw; i<nr+hw; i++) for (3=0; j<hw; j++) {

m[i] [hw-j] = mli] [nc+j]; m[i] [nc+hw+j] = m[i] [hw+j]; 3}

/* - enlarging the periphery by adding upper and down margins */
for (i=0;i<hw;i++) for (3=0; j<nct+fw-1; jt+) {

wlil (3] = minr+i] [§]1; mlnr+hw+i] [§] = mlhw+il [§]; ¥

I e convolution ——=——————_________ */
fn = fopen (argv[l],“rb“);
for (i=hw; i<nr+hw; i++) { /* making convoluted image */
fread (r,2,nc,fn); /* geting image row from output file */
for (j=hw; j<nc+hw; j++) { s=c[0][O]*(double)m[i][j];
for (1=1; 1<=hw; 1++) { /* 4 symetric pixels on the axis */
1s=m[i-1][j]; I1s+=m[i+1] [§]; Is+=m[i][j-1]; Is+=m[i] [j+1];

s += c[11[0]*(double)1ls; 11=1w[1]; if(1<11) 11-=1;
for (k=1; k<=11; k++) { /* 4 symetric pixels on diagonals */

ls:m[i-l][j—k];ls+=m[i—l][j+k];1s+=m[i+1][j—k];1s+=m[i+1][j+k];
if (k!'=1) { /% +4 symetric pixels in other cases */

Is+=m[i-k][j-17; Is+=m[i-k] [+1];

Is+=m[i+k] [j-1]; l1s+=m[i+k] [+1]; }

s += c[l][k]*(double)ls; }} /% end of k and 1-loops */
if (conv==1) { /% making In/Ic and saving the result in m[1[] */
s=((doub1e)r[j—hw]/s—1.)*dc; if(s<-dl) s=-dl; if(s>dl) s=d1;

if (s<0.) mli-hw] [j~hw]=(int)(s-.5);
else m[i—hw][j—hw]=(int)(s+.5); }
if (conv==2){ /% making In.Ic and saving the result in m[1[] */
s=(double)r[j—hw]*(s/dc+1.); if(s<-dl) s=-dl; if(s>dl) s=dl;
if (s<0.) m[i—hw][j—hw]=(int)(s-.5);
else m[i—hw][j—hw]=(int)(s+.5);
rlj-hwl=m[i-hw] [j-hw]; } } /* END OF j %/
if((i—hw)/1oo*1oo==(i—hw))printf("%d “;i-hw); } /% END OF i */
fclose (fn);
if (conv==2) { /* saving the result in the out.file */
fn = fopen (argv[1],“wb”); for (i=0; i<nr; i++) {
for (j=0; j<nc; j++) r(j1=m[i][§]1;
fwrite (r,2,nc,fn); 3} fclose (fn); 3}
if (it/2<ni) goto Next_iter; }

145

we
Text Box

