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Abstract. Using the method of N-bodies dynamical modeling distributions of different com-
ponents of the galaxy stellar disk velocity dispersion have been derived. The velocity dispersion
observed along the line of sight is strongly dependent on the galaxy inclination angle and on
the mutual orientation of the bar and the disk major axis. The non-symmetric structures in the
velocity dispersion distribution are shown to be 2-3 times as small as the sizes of the bar de-
termined from the surface density. Dynamical models of individual SB galaxies (NGC 936, 1169,
2712) are constructed. The observed kinematic (rotation curves of the gaseous and stellar com-
ponents, radial distribution of the velocity dispersion of stars) and photometric data admit an
assumption that the classical gravitation instability of the global bar-mode in the stellar disk is
responsible for the origin of bar structures in these objects, and the bar lifetime may be very
long. The dynamical modeling makes it possible to investigate into non-stationary structures the
lifetime of which is relatively short and which are observed only in the part of galaxies passing a

particular evolution phase. Perhaps double-barred stellar disks belong to such objects.
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1. Introduction

Observations made over the last few years have in-
creased the relative proportion of stellar systems
with bar-like structures. A descriptive example is the
Milky Way, the central bar of which was discovered
in the early 1990s (Weinberg, 1992). No understand-
ing of the galactic morphology is possible without
realizing that the galaxies are basically dynamical
systems. The origin of spiral arms, bars, rings and
other galactic structures can be understood only in
terms of collective processes of gravitating medium.
To reveal physical mechanisms, one has to know the
spatial 2D/3D distribution not only of the luminos-
ity but also of the kinematic parameters — veloc-
ity fields of stars and gas, velocity dispersion of stars
and gas. By the present time the observational tech-
niques have reached the level when spectral investi-
gations can provide detailed kinematic information
about the stellar population. Such an opportunity is
provided by 2D spectroscopy of galaxies which is use-
fully complemented by numerical dynamical 3D mod-
eling. By the dynamical modeling we will mean the
numerical solution of equations of motion of gravi-
tating N-bodies with allowance made for the external
potential.

galaxies: structure — galaxies: individual: SB galaxies — methods: numerical

The non-axisymmetric distribution of matter and
potential has an effect on the periphery of galax-
ies. There exists the point of view that a bar gen-
erates a spiral pattern in a disk. However, numerous
observed SB0 galaxies without any noticeable spiral
pattern give rise to a question: why is the matter
outside the bar distributed axially-symmetric? This
is undoubtedly associated with the absence of the
gaseous component. Even a powerful bar without a
gas-dynamical subsystem is unable to create a long-
lived stellar spiral pattern of large amplitude. This
is illustrated by dynamical modeling. As an example,
we have constructed a dynamical model of the SB0
galaxy NGC 936.

Several mechanisms of the origin of a bar has been
suggested. The main mechanisms are the gravitation
instability of the global bar-mode (Ostriker & Pee-
bles, 1973) and the instability of radial orbits (Poly-
achenko, 1992). The parameters of a bar are affected
by various factors: interaction with the gaseous sub-
system and interactions bar/bulge and bar/halo. One
of the key points in establishing the mechanism of
formation of the central bar is determination of the
corotation radius r. from the equality (r.) = Qpor.
The algorithm of Tremaine & Weinberg (1984) of cal-
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culation of the angular velocity of the bar, 24,,, in
the processing of the results of dynamical modeling is
lacking errors that arise when using the observational
data. If a galaxy contains regions of pronounced star
formation, then the continuity equation that forms
the basis of the method is disturbed because the gas
transits into the stars. A second source of errors is
the variation in brightness distribution caused by the
presence of dust (Merrifield & Kuijken, 1995). As the
interaction of the bar and the spheroidal subsystem is
disregarded, in the case of establishing quasistation-
ary rotation 7pe, S 7 (Ther 15 the semimajor axis of
the bar). Dynamical friction of the bar against the ha-
lo leads to angular moment transfer and decelerates
rotation of the disk component.

The existence of galaxies without a bar is an ar-
gument either for a massive spheroidal subsystem or
strong overheating of the stellar disk, which mani-
fests itself in large values of the velocity dispersions
of stars. An estimate of maximum dispersions of ra-
dial velocities at which stabilization of the global
bar-mode occurs is obtained in Section 3 within the
frames of dynamical models. This critical value de-
pends on the ratio of the disk mass My to halo mass
M}, within a fixed radius. It is shown that the exis-
tence of a long-lived global bar-mode in stellar disks
of galaxies without a bar is possible at large values
of the mass of halo, M\ /M, 5 3, depending on the
law of density distribution in a spheroidal subsystem.
It should be emphasized that bulges can be efficient
stabilizers of a bar-mode (Kalnajs, 1987).

From the results of dynamical modeling, spa-
tial distributions of dispersions of different compo-
nents of velocities of stars with the presence of a
bar-mode have been derived. Three dispersion com-
ponents, ¢, ¢y, ¢;, have different distributions. This
should be taken into account when analysing the ve-
locity dispersion of stars along the line of sight.

The discovery of double bars in the centres of
galaxies poses a problem of studying physical mecha-
nisms of formation of such structures. Numerical sim-
ulation shows that double bars can be formed in a
stellar disk. These structures, however, prove to be
non-stationary and short-lived. Their characteristic
lifetime is generally no longer than the period of ro-
tation. As a result, only one bar remains. It is possible
that the observed double bars refer to the initial stage
of formation of an SB galaxy or to its short phase.
This can explain the low frequency of occurrence of
double bars.

2. Dynamical models

Consider the dynamics of gravitating N-bodies, which

is defined by the set of equations

d27; - - .

d—t21=§:fij+Fs (’LZI,...,N),
J

the force ﬁj determines interaction between ith and
jth particles, the force ﬁ,, = ﬁh + ﬁb results from
the spheroidal subsystem bulge/halo. We will assume
that in numerical models G = 1. The distribution
of matter in the halo gn(r) = oro/(1 + (r/a)?) at
ono = My /{4ma®[R/a — arctg(R/a)]} yields the force

= 471'0.39;10 r r 7
Fo=-T220 0T _arctg(n)} -
. 72 a g(a) r

and is determined by the spatial scale a and by the

mass M), inside a sphere of » < R. We use the King
bulge g, = os0/[1 + (r/b)}]*/2, for which the value

M, = 47rb3gb0{ Inf(76)max/b + V1 + ((78)max/b)?] —
(Tb)max/b

1+ ((T6)max/b)?
inside 7 < (74 )max yields the force

- 47b gpo T [ 2 r/b M, 7
Fo=- M, {ln (5 * 1+b_2) TN +/r2/b2}_’7;‘
It is likely that in the region 7 > (rp)max we have
Fy = —M,7/r3. These formulae describe a bulge with
sharp density decrease. Soft-truncated bulges have
been used in the models. The expressions for them
are very bulky, and they are not presented.

The surface density of the stellar disk is charac-
terized by the scale L, which defines an exponential
law o (7) = og exp(—r/L). At the distance r = 3L the
disk was truncated in accordance with the observa-
tional data. We will consider that R = 4L.

The vertical structure of the disk is determined by
the equation (Bahcall, 1984):

2
%§=4WG(Q+QS), cﬁ%:—g—fg.
The value p, is the volume density oI matter in
spheroidal components. As a result. we obtain an
equation for the volume density of the disk o(z

d ( ,do 2 (d0\? 30 () A2) —
de(czdz)_cz(g,;) +47G(o° ~ 0s(z)57) =1

in common with conditions ¢(z = 0, = ¢
do(0)/dz =0, [*_pdz = o(r.p). We have 1o find o

} is the mass of the bulge which

and g(z) at the given g4(2). c:(z) and ¢. For this pur-
pose construct the function F(gg) =2 [~ olz)dz -2
We solve the equation F(og) = 0 by the iteration
method jointly with the numerical inz L
equation for g(z). Then distribute the par
the z coordinate on the specified grid

(k = 1,K). In the kth cell we place the particles
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2k
in proportion oy /o, where ox = 2 [ o(z)dz and
z

K
Y. o =o0.
k=1

The initial equations are written in an approxi-
mation (&/w,) € 1. The disk thus constructed is
not precisely stationary. However, we are investigat-
ing the initial unstable states, which evolve to a new
stationary state of the disk (if it exists). Therefore,
the lack of precise initial balance in the vertical di-
rection plays the part of a slight additional initial
disturbance.

The initial function of distribution in velocities is
Schwarzschild’s, which is anisotropical Maxwell dis-
tribution

where {u,v,w} are velocity components in the cylin-
drical coordinate system. The radial component of
Jean’s equation yields the mean tangential velocity
under the assumption z = 0 and symmetry about
z2=0:

2 2 S
2 _ (2 _yv2,2fq_ Ce r 0(ec;) L@(uw)}
V=0 —VC+C'{1 c$+gc2 or T & a8: )

where the circular velocity is defined by the net grav-

itational potential V2 = r(?;f) alone, the stroke

denotes averaging over the az1muthal coordinate .

It should be emphasized that the parameters of
the model bar may depend also on the original state of
the system, in particular, on the spatial distribution
of velocity dispersions in the disk. The way of creation
of the bar is not fundamental for us in the given case,
it is important that the bar with such parameters can
exist in the system:.

Fourier-analysis of the surface density in the coor-
dinates ¢ and In(r) furnishes illustrative information
for studying bar-like structures. For the Fourier coef-
ficients

A(m,p, 1) exp {i[my;(t) + pln(r;(#))] } ,

n[\’]z

where r; and ¢; are the radial and azimuthal coordi-
nates of the jth particle, m is the integer, p character-
izes twisting of waves. We calculated the versions of
m=0,1,2,3,4,5,6 and p = -20,-19,...,0,1, ..., 20.
Introduce also integral amplitudes of the Fourier har-
15
3. |A(m, p)|?, which are conve-
p=—15
nient when studying the global evolution of the sys-
tem.

monics A(m) =
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3. Conditions of stabilization of the
global bar-mode of late-type galaxies

Two conditions of stabilization of the global bar-mode
are most frequently discussed in literature. The cen-
tral bar is suppressed if the ratio of kinetic energy of
chaotic motions of stars (after subtraction of rotation)
to potential energy exceeds some critical value top =
(Ex/\U})eriy ~ 0.14 (Ostriker & Peebles, 1973). It
can only slightly depend on the model parameters. It
is more important that it is not very convenient to
use such a criterion since it includes the unobserved
parameters. Numerous data have appeared on deter-
mining spatial velocity fields and velocity dispersions
in galaxies by the 2D spectroscopy technique, that
is why, it is desirable to have a bar stabilization cri-
terion in the form ¢o/Vinez > (€0/Vimaz)erit, where
co is the radial velocity dispersion of stars at some
fixed radius (we will consider that co refers to the
centre), Vi,qe is the maximum speed of rotation. A
) ) o1 A+ +c? N
simple estimate 0.14 = E./|U| ~ 3 GMp/R =
1 ¢ 2 _ 2 /.2 2 _
272 (1+a2 +0?) at a? = /e = 1/2, o? =

2/c = 1/4 yields ¢;/Vinaz = 0.4, which needs to be
refined.

Along with the classical criterion of Ostriker and
Peebles (1973), top ~ 0.14, other conditions of stabil-
ity of the global bar-mode (GBM) were put forward.
Christodoulou et al. {(1995) discussed the condition
a = LQ;/2|)U] < 0.25, here L is the total angular
momentum, §2; is the Jeans frequency. Some incon-
venience of such a kind of criteria is that they are
written relative to unobserved parameters. The condi-
tions for the development of the GBM in hot systems
deteriorate. Because of this, if the velocity dispersion
of stars exceeds some critical value, cqr;, the origi-
nally axially-symmetric disk proves to be stable. It
is more convenient to write such a condition for the
radial velocity dispersion c,, since the dispersion of
azimuthal velocities is equal with a good accuracy to
co = 20/ (2 = V,/r is the angular velocity of
star rotation, @ is the epicyclic frequency). Besides,
the criteria of gravitation stability are written also for
Cr.

The global bar-mode is suppressed in the case
of massive spheroidal subsystem (halo/bulge). It
is customary to assume that the critical ratio is
M;/Mglerie ~ 1. This result is rather rough and
needs specification. The critical value of M,/M|cri is
strongly dependent on the ratio of the bulge and halo
mass to the disk mass and spatial scales of spheroidal
subsystems. We restrict ourselves to the study of
models of late-type galaxies, which generally possess
a low-mass bulge.

Let us analyse the results of dynamical modeling
without a bulge. Since in the halo one should consider
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Figure 1: The dependence of the radial disk velocity
dispersion at the centre ¢, = ¢.(r = 0,t = 0) vrs
mazimum disk rotation velocity upon the halo mass.

a > L, the rotation curve in such a potential has then
a relatively extended region of increasing. Because
of this, gravitational influence of the flat subsystem
dominates in the central part of the disk, (r < L),
which determines favourable conditions for the de-
velopment of the bar-mode. Even the massive halo,
1 < M}, €2, is incapable to suppress the global bar-
mode if the disk is relatively cold. And only beginning
with Mp & 2 at @ ~ L (M} is the mass of the halo
within the limits of the four exponential scales of the
disk) at any small initial dispersions of velocities, the
gravitation instability does not lead to formation of a
long-lived bar-structure. In the series of experiments,
only the halo mass M}, was varied with a spatial scale
a = L. Fig. 1 shows the dependence of the radial disk
velocity dispersion at the centre ¢, = ¢.(r = 0,t = 0)
vrs maximum disk rotation velocity upon the halo
mass. It turned out that the global bar-mode insta-
bility can form a bar at My /My ~ 2. In the case the
halo is more friable (a & 2L), the bar is formed when
the spheroidal subsystem is even more massive.

Apart from the mechanism of gravitation insta-
bility of the global bar-mode, an important part in
formation of bars can be played by the instabil-
ity of radial orbits (Polyachenko, 1992; Polyachenko
and Polyachenko, 1996). This mechanism is the most
efficient in hot disks with a massive concentrated
spheroidal subsystem.

4. Structure of the stellar disk with a
bar

4.1. Surface density

Let us examine a self-gravitating disk with a mini-
mum influence of the spheroidal component. If M, =

0, then in the process of heating an important role is
played by the mode m = 1, which results in displace-
ment of the bar centre with respect to the kinematic
centre. In order to avoid this, let us take account of
the low-mass bulge with a large scale. Then the ef-
fect the bulge has on the development of the global
bar-mode will be a minimum.

At the initial time (except for the centre itself)
the Toomre parameter is Q1 ~ 1. The disk is unsta-
ble with respect to both the global bar-mode and the
small-scale Jeans instability. In the initial stage the
third mode m = 3 dominates. Fig.2 shows the iso-
lines of surface density and the amplitudes of integral
Fourier harmonics A(t) for m =1,2,3,4,5,6. The ar-
row indicates domination of the harmonic m = 3 in
the initial stage of instability development. Such a be-
haviour is typical enough. It can be assumed that ob-
servations of triangular structures may be indicative
of the initial stage of development of the gravitation
instability leading to formation of a bar structure.

If the distribution of the surface density in the
initial time has an exponential profile and the disk
is relatively cool (in the final stage the dispersion is
about 1.5 as high as the initial), then a marked re-
distribution of matter in the disk occurs as a result
of formation of the bar. Note some characteristic fea-
tures of this process.

e The disk spreads radially. Up to 30 % of mass
may leave the region (r < 4L) occupied originally by
matter. The larger M}, the less mass escapes from
this region.

e The resultant profile differs noticeably from
the exponential one. The density increases at the cen-
tre (r < 2L/3) as compared to the initial profile,
and then it decreases (Fig. 3). To derive an exponen-
tial density profile, the radial distribution of a special
kind should be given (see Fig. 3, dots).

The structure of the bar, its dimension, the ra-
tio of semiaxes and also kinematic characteristics in
the central region of the disk depend not only on the
rotation curve shape but also on the laws of distri-
bution of matter in disk and spheroidal subsystems.
In Fig.4 are displayed the distributions of isolines of
the surface density of the disk subsystem o(z,y) with
strongly differing bars and the corresponding curves
of rotation and the velocity dispersions of the stellar
disk component. This example illustrates that it is
rather difficult to understand the structure of a par-
ticular galaxy within the frames of common models;
one has to construct models for each real object.

4.2. Velocity dispersion

Formation of a bar as a result of development of grav-
itational instability is accompanied by heating of the
disk, which results in increasing velocity dispersion. A
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Figure 2: The upper panel of the figure shows the typ-
ical time relation of the integral amplitude of Fourier
harmonics for different modes during the bar forma-
tion. In the initial stage the third mode, m = 3, domi-
nates. The lower panel displays the distribution of the
surface density at the time moment t = 1.

quasistationary regime is established only after ~ 2
revolutions over the outer edge of the disk. During
this time the bar manages to make about 2.5 revolu-
tions.

In an epicyclic approximation (a stationary axially
symmetric disk in which the dispersion is small as
compared to the rotation velocity) there must be a
simple relation between the dispersion components
(Vandervoort, 1970):

colr) = parkscrlr).

One would think that in a disk with a bar the epicyclic
approximation is obviously disturbed. However, it
turned out in dynamical modeling that in a hot non-
axisymmetric disk with a bar Q. = c,e/(2Qc,) ~ 1
not only at the end of calculation under the condi-
tion of quasistationary state but also during the whole
stage of formation of the bar structure (Fig. 5).

10.00

0.10

0.01

0.00 1.00 »/4L

0.25

050 0.75

Figure 3: Radial surface density variation in the disk
averaged over the azimuth angle (the thin line is the
initial ezponential distribution, the bold line is the fi-
nal profile after formation of the bar, the dots are the
initial profile which leads to an exponential relation-
ship at the end of the experiment).

Fig 6 shows the isolines of three velocity dispersion
components of matter in the disk, ¢;, c,, c;. The sur-
face density distribution depicted in Fig. 4 on the left
corresponds to them. Each velocity dispersion compo-
nent has its characteristic distribution which is typi-
cal of the bar-mode irrespective on the conditions of
the experiment. Note that unlike the surface density,
the radial velocity dispersion distribution conserves
two spiral arms. At the same time, the dimension of
the “bar” from the distribution of the ¢, is approxi-
mately twice as small as that in the surface density.
The spatial distribution of the azimuthal velocity dis-
persion ¢, differs markedly from c.(z,y) for which
an elongated structure at the centre is characteristic.
The half-thickness of the disk i does not establish the
identity of a bar-structure.

The velocity dispersion along the line of sight de-
pends on the mutual orientation of the disk and bar
according to the formula

Cobs = /€2 c0s2(3) + 2 sin? (i) cos?(ar) + c2 sin? (i) sin®(a)

where a is the azimuthal angle reckoned from the
major axis in the galaxy plane, Fig.7 shows the ve-
locity dispersion distribution along the line of sight
at different angles of disk inclination (i = 30°,60°)
and orientations of the major axis of the disk and the
bar. If the major axes of the bar and galaxy coincide
(see Fig.7c, d), then the dispersion distribution does
not reveal any bar-structure. At other orientations
of the bar and major axes of the galaxy, elongated
structures in the field of c,y are pronounced. The
“bar-structure” of the velocity dispersion in all the
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Figure 4: The left panels are the isolines of the surface density inside the radius r = 4L. The right pancls
display the corresponding rotation curves of the disk matter V(r) (the line) and the radial velocity dispersions
¢r(r) (the dots).
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Figure 5: The parameter Q. as a function of time (a),
the time-averaged radial relationship Q. (b).

cases is of small size in comparison with the surface
density bar. All other things being equal, the velocity
dispersion bar is more pronounced at larger inclina-
tion angles #, which is related to diminishing of the
contribution of the vertical velocity dispersion c, to
Cobg- Note that the distributions of different velocity
dispersion components, ¢, ¢y, ¢;, in the case of pres-
ence of a massive bulge remain bearing resemblance
to those depicted in Fig.7.

5. Examples of modeling stellar disks
with bars

We will describe in this section dynamical models of
three galaxies. If we coordinate the observed rotation
curves and velocity dispersions with the kinematic
data obtained in the numerical experiment, it will
be possible then to determine the spatial distribution
of matter in the bulge and halo (Khoperskov et al.,
2001). Such an approach was implemented for a num-
ber of galaxies without the bar. We will discuss here
SB galaxies.

Unfortunately, all kinematic data of the central
region have a relative large uncertainties (especially
the velocity dispersion of stars). For this reason, the
results obtained should be taken as estimating.
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Figure 6: The distribution of the dispersions of radial,
azimuthal and vertical velocity components in the disk
plane in the presence of the bar. The surface den-
sity distribution corresponding to this case is given in

Fig. 4 (left).
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Figure 7: The velocity dispersion distribution of the disk matter along the line of sight at different inclination
angles of the disk: a, b — the major azis and the bar are perpendicular; ¢, d — the major acis and the bar are
parallel; e, f — the angle of the major azis with the bar is 45°.

5.1. NGC 936

We will use the observed rotation curves Vg,, and Vi
and the velocity dispersion of stars ¢y, 0of Kormendy
(1984). NGC 936 belongs to lenticular galaxies, which
provides for a massive enough central component. Let
us choose the disk scale L = 3.7kpc, the bar radius
is Tpar = 4.1kpc, and the inclination angle ¢ = 41°.
The given galaxy is a rare object for which attempts

are known to find the angular velocity of bar rotation
directly from the observed velocity field. From the
data of Merrifield and Kuijken (19951 Qg,, = 60 =
14km/s/kpe. However in the paper by Kent (1987) 1t
was found that Qpe, = 104 £ 37 km/s/kpc.

In Fig. 8 are shown the results of dynamical mod-
eling. In the central region, comparison was made
by the rotation velocity of the stellar component.
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Figure 7: (continued)

at the periphery it was made by the velocity of ro-
tation of gas. Satisfactory agreement turns out at
the disk mass My = 16.7 - 10'° My, the halo mass

My = 17.8 - 10! M with a scale a = 5.12kpc,
the mass of the nucleus M, = 0.21 - 10!° M, with
a scale b; = 0.22kpc ((rp1)max = 0.46 kpc), the bulge
mass My = 3-10'° My with a scale b, = 1.57kpc

((Tb2)max = 3.2kpc).

Attempts to derive dynamical models of NGC 936
had been undertaken earlier (Sparke & Sellwood,
1987), but apart from the bar a powerful two-armed
stellar spiral was formed according to the derived
model, which is not observed in the lenticular galaxy

NGC936. Besides, no agreement with the observed
kinematic parameters was carried out.

5.2. NGC1169

The galaxy NGC 1169 is classified as SABb(r) (de
Vaucouleurs et al., 1991). When constructing a dy-
namical model, the exponential scale was assumed to
be L = 4.31kpc, the inclination angle i = 53°, the
bar radius 7, = 6.06kpc, the axes ratio of the bar
was assumed to be equal to 0.6. The variation of the
gas velocity rotation along the radius is known be-
yond the radius r = 10kpc (van Driel & van Woer-
den, 1994). The data on the rotation velocity of stars
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Figure 8: The results of construction of the dynamical
model for the galaxy NGC 956 (the lines). Different
symbols indicate the observational data (Kormendy,
1984).

refer to the central region, r < 3.6kpc (Heraudeau
& Simien, 1998). A dynamical model has been con-
structed which describes best the aggregate of ob-
servational data. The total mass within r < 4L =
17.22kpc makes My, = 2.8 - 10! M. It is the sum
of My = 0.952-10'* My, M, = 0.093-10* Mg, M), =
1.749 - 10!! M. The halo is massive, M, /M, = 1.8,
but the halo scale, a = 7.11 kpc, exceeds considerably
the disk scale. This facilitates the formation of the bar
as a result of development of instability of the global
bar-mode. Within the two disk scales the effect the
halo has on the rotation curve is small, and only be-
yond 12.5 kpc= 3L the contribution of the halo begins
to dominate.

We have not been able to obtain the odserved ve-
locity dispersion ¢,5; = 150 + 200km/s in the region
r < 0.5L ~ 2.1kpc within the dynamical model. This,
apparently, implies that the contribution of bulge
stars to the observed velocity dispersion is consid-
erable here. And even in the zone 0.5L < r < L
the bulge influence is small and c,ps and cezp are in
agreement. The parameters of the bulge obtained in
the dynamical model (My/My4 = 0.098, b = 0.32kpc,
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Figure 9: The central part of the disk (r < 2L) of some
dynamical models. Isolines of the surface density are
shouwn.

(rs)max = 3.2kpc) appear to be very close to the
results of decomposition of the brightness profile
(My/My = 0.12, b = 0.319kpc, (7 )max = 3-224kpc).
Our estimate of the total mass within r = 29kpc,
Mot = 4.9 10! M is not at variance with the con-
clusions of van Driel & van Woerden (1994) who ob-
tained M, = 4.5- 101! M.

5.3. NGC2712

The results of the brightness profile decomposition
for NGC 2712 yield L = 244kpc, b = 0.19%4kpc,
(rp)max = 2.961kpc, My/Al; = 0.055, i = 60°. The
parameters of the bar: rpq, = 4.72kpc. the axial ratic
is 0.4.
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We will use the rotation curve of the gas compo-
nent, Vgq4, obtained by Marquez and Moles (1996).
We borrow V, and ¢y, from the paper by Heraudeau
et al. (1999).

The dynamical model with the bulge parameters
obtained from the photometric decomposition agree
poorly with the kinematic data at the centre. Here we
have been unable to derive the observed parameters of
the bar. This is why, we have constructed models with
other parameters of the bulge. When the mass of the
bulge is increased to My/My = 0.13, this model has
then a better fit to the observations in the central re-
gion. The best fit has been derived in a more complex
model of the central spheroidal subsystem consisting
of a nucleus (M, = 1.34 - 10° Mg kpc, b, = 0.18kpc,
(T61)max = 0.56kpc) and a bulge (M, = 3.14-10° M,
by = 0.78kpe, (752)max = 1.56kpc).

6. Double bars

In the process of dynamical modeling under certain
conditions structures are formed that can be inter-
preted as double bars (Fig. 9). Nested “bar” can make
an arbitrary angle to the main one. However, the life-
time of such structures is not long. They are formed
in final stages of development of gravitation instabil-
ity, generally at sufficiently massive spheroidal com-
ponents. If double bars are really dynamical struc-
tures then the relatively rare frequency of occurrence
of such systems becomes explainable.
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