УДК 524.3(084)-852/74

АТЛАС СПЕКТРОВ ИЗБРАННЫХ ЗВЕЗД В НАЗЕМНОМ УЛЬТРАФИОЛЕТЕ

© 2011 Е. Л. Ченцов^{1*}, В. Г. Клочкова¹, Т. Киппер², Н. С. Таволжанская¹, В. Е. Панчук¹, М. В. Юшкин¹

¹Специальная астрофизическая обсерватория, Нижний Архыз, 369167 Россия ²Обсерватория Тарту, Тыравере, 61602, Эстония Поступила в редакцию 11 апреля 2011 г.; принята в печать 31 мая 2011 г.

Представлен атлас спектров высокого отношения сигнал/шум и высокого спектрального разрешения ($R \ge 60000$) в плохо изученной коротковолновой области длин волн вплоть до 3055 Å. Спектры хорошо изученных звезд близкой температуры (β Ori, α Lyr и α Cyg) сопоставлены со спектром малометалличного A-сверхгиганта KS Per, атмосфера которого обеднена водородом, H/He = 3×10^{-5} . Изучено поле скоростей в расширяющихся атмосферах и оболочках указанных звезд. Атлас в полном объеме и детальное отождествление спектральных деталей приведены в Интернете.

Ключевые слова: звезды — свойства, классификация

1. ВВЕДЕНИЕ

Актуальность создания спектральных атласов возросла в последние годы в связи с ростом качества наблюдательных данных, обусловленного переходом на современные спектрографы высокого спектрального разрешения с регистрацией спектров на малошумящие матрицы ПЗС. В настоящее время, когда созданы возможности представления атласов и детальных таблиц с отождествлением линий в электронном виде, создание спектрального атласа является высшим уровнем архивации наблюдательных массивов.

Данных об УФ-излучении звезд различных типов систематически не хватает. Причиной тому является небольшое число спектрографов высокого разрешения, пригодных для работы в наземном УФ-диапазоне. Большинство систем скрещенной дисперсии снабжены стеклянными призмами и/или оптоволоконным сочетанием "телескопспектрограф", и то и другое резко снижает пропускание оптики в УФ. Коротковолновая граница диапазона, регистрируемого такими спектрографами, в большинстве случаев находится вблизи 3900 Å.

Ультрафиолетовое излучение является индикатором тех слоев атмосфер, где среди источников непрерывного поглощения и рассеяния преобладает вклад томпсоновского (горячие звезды) и релеевского (холодные звезды) рассеяния. Сложности теоретического описания УФ-спектров дополняются дефицитом наблюдательного материала, полученного с низким уровнем шумов и с высоким

спектральным разрешением. В этой области, в частности, лежит предел Бальмеровской серии водорода. Измерения Бальмеровского скачка широко используется для спектральной классификации и определения фундаментальных параметров звезд (см. ссылки в [1]). Исследования бальмеровских спектров с низким спектральным разрешением, положенные в основу эмпирической классификации горячих звезд, были развиты затем в работах со средним спектральным разрешением, когда появилась возможность выбора и/или уточнения теории уширения линий. В настоящую эпоху, когда возможности наблюдений вблизи бальмеровского предела возросли (величина произведения спек-трального разрешения на светосилу увеличилась на два-три порядка), следует выполнить новые наблюдения и сравнить параметры моделей атмосфер, определяемые по низким и высоким членам бальмеровской серии. Отдельный интерес представляют также наблюдения звезд с аномальными бальмеровскими скачками.

В данной работе мы представляем спектры трех звезд, принадлежащих населению диска (β Ori, α Lyr и α Cyg), в сравнении со спектром аномального А-сверхгиганта КS Рег на далеко продвинутой эволюционной стадии. Основные параметры звезд приведены в Табл.1. Напомним, что α Lyr — спектрофотометрический стандарт и стандарт лучевой скорости, а β Ori, α Lyr и α Cyg являются стандартами в системе двумерной спектральной классификации.

Близкий по эффективной температуре к трем нормальным звездам атласа пекулярный объект

^{*}E-mail: echen@sao.ru

КЅ Рег относится к малочисленной группе тесных двойных с дефицитом водорода [2]. КЅ Рег имеет измененный в ходе собственной эволюции химический состав. Киппер и Клочкова [3], используя спектральные данные с 6-метрового телескопа, нашли большой дефицит водорода в атмосфере КЅ Рег, $H/He = 3 \times 10^{-5}$, и низкую металличность [Fe/H]= -0.8. Кроме того, выявлен большой избыток азота, [N/Fe]= +1.4, при пониженном содержании углерода, что согласуется со стадией эволюции звезды. Из-за большого дефицита водорода в спектре КЅ Рег содержатся линии, нетипичные для звезды спектрального класса А.

Основным достоинством данного атласа является расширение рабочего спектрального диапазона в область коротких длин волн, до 3050 Å, т.е. вплоть до перекрытия с областью, традиционно относимой к ракетному ультрафиолету. Высокие спектральное разрешение и отношение "сигнал/шум" делают актуальным детальное описание спектров даже стандартных звезд в области наземного ультрафиолета (3000–3800 Å), которая из-за насыщенности линиями является более информативной, чем видимый диапазон, особенно для горячих звезд.

Рис. 1 демонстрирует различие области Бальмеровского предела в спектрах звезд разной светимости, но близкой температуры. Длинноволновый предел атласа заходит далеко в видимую область спектра, вплоть до 4500 Å, что позволяет сопоставлять наши данные с уже опубликованными по спектрам в традиционной области длин волн. Информативность ближнего УФ-диапазона для изучения спектров звезд хорошо иллюстрирует Рис. 2, где представлены избранные фрагменты спектров для 4-х звезд программы.

Таблица 1. Основные параметры звезд из базы астрономических данных SIMBAD

Star	HD	Sp	B, mag
β Ori	34085	B8 Ia	0.1
lpha Lyr	172167	A0V	0.0
$\alpha\mathrm{Cyg}$	197345	A2 Ia	1.3
KS Per ¹	30353	A5 Ip	8.1

1 – H-deficient star [3]

2. НАБЛЮДАТЕЛЬНЫЙ МАТЕРИАЛ И ЕГО ОБРАБОТКА

Высококачественные спектры звезд в интервале $\lambda \lambda \approx 3050 - 4525$ Å (отношение сигнала к шуму $S/N \ge 100$, спектральное разрешение $R \ge 60000$) получены нами в фокусе Нэсмита 6-метрового телескопа БТА Специальной Астрофизической Обсерватории РАН с кварцевым эшельным спектрографом НЭС [4] 19 и 20 октября 2008 г. Эшелле спектрограф НЭС работает на 6-м телескопе с 1998 г., но только с 2001 г., после установки матрицы с высокой чувствительностью в ультрафиолете, он стал эффективным средством наблюдений в коротковолновом диапазоне. Светоприемником служит матрица ПЗС Астрономической обсерватории университета г. Уппсала (Швеция), имеющая высокую чувствительность в синем и УФ-диапазонах. Шум считывания составляет 7.7 е⁻, темновой ток — 1.5 е⁻/h. Число светочувствительных элементов 2048×2048, размер одного элемента 0.015×0.015 мм.

Параметры эшелле-решетки и камеры таковы, что, в сочетании с используемой матрицей ПЗС обеспечивается полное перекрытие соседних порядков эшелле-спектра, а в самых высоких УФпорядках — даже двукратное перекрытие. Решетки скрещенной дисперсии сменные 300 и 600 штр/мм. Шмидтовский корректор камеры и зеркало Манжена (мениск двойного хода в качестве кассегреновского зеркала) изготовлены из плавленого кварца. Полеспрямляющая линза отсутствует, ее функции выполняет манженовское зеркало. Защитное стекло криостата матрицы ПЗС увиолевое. Квантовый выход используемой ПЗС-матрицы в ультрафиолете достигает 70%. В целом, оптический тракт спектрографа построен с минимальными потерями, в том числе и в ультрафиолете, до порядка 3100 Å [5]. Система автоматического гидирования настраивается по фиолетовому участку изображения с учетом направления и величины вектора атмосферной рефракции.

Для исключения следов космических частиц и повышения отношения S/N мы делали, как минимум, две экспозиции для каждого объекта. Обработка двумерных эшелле-кадров (вычитание темновых кадров, очистка от космических частиц, калибровка длин волн, экстракция одномерных векторов) проводилась с помощью модифицированного [6] контекста ECHELLE-комплекса программ MIDAS. Удаление следов космических частиц проводилось медианным усреднением двух спектров, полученных последовательно один за другим. Источником спектра сравнения служила торий-аргоновая лампа. Окончательная обработка спектров выполнена с помощью специализированной программы DECH [7], которая обеспечивает необходимые для создания атласа процедуры, в частности, позволяет приводить спектры к виду $r(\lambda)$ и измерять лучевые скорости по отдельным линиям, совмещая по оси λ прямые и зеркальные изображений их профилей.

Рис. 1. Нормированные на континуум спектры сверхгиганта α Суд (вверху) и звезды главной последовательности α Lyr (внизу) в полном интервале длин волн, зарегистрированном со спектрографом НЭС БТА.

Рис. 2. Фрагменты спектрального атласа, г_λ(λ), для объектов атласа. Сверху вниз: β Ori, α Lyr, α Cyg, KS Per. Горизонтальная ось размечена по лабораторным длинам волн слабых абсорбций. Нанесено отождествление избранных линий.

Таблица 2. Гелиоцентрические лучевые скорости по резонансным межзвездным линиям Till и Call

Рис. 3. Зависимости гелиоцентрической лучевой скорости от остаточной интенсивности линии, выраженной в процентах от уровня континуума, для α Lyr, β Ori, α Cyg и KS Per. Каждый значок соответствует одной линии. Кружки — FeII и др. ионы группы железа, прямые крестики — FeI и др. нейтральные атомы, косые крестики — HI, HeI, CII, NII, OII, ромбики — SII MgII, SiII, CaII. Заполненные кружки — линии металлов с коротковолновой стороны от бальмеровского предела в спектре α Cyg. Во фрагменте для β Ori горизонтальной прямой отмечена скорость звезды в целом V_{sys} = 18.7 км/с.

Обработка спектров KS Per проведена с помощью средств пакета IRAF NOAO. Для получения суммарного спектра этой звезды были сложены 5 двумерных эшелле—кадров, каждый из которых получен с часовой экспозицией.

В качестве лабораторных использованы в основном длины волн из таблиц Стриганова и Одинцовой [8] и из таблиц солнечного спектра [9]. Выявление инструментальных сдвигов спектров звезд относительно спектров сравнения с помощью теллурических линий невозможно: они отсутствуют в области спектра, охваченной атласом. Поэтому возможные систематические ошибки измерений лучевых скоростей оценены по межзвездным линиям. В Табл. 2 наши данные сопоставлены с высокоточными данными других авторов для β Ori, α Cyg и γ Cas, спектр которой не включен в атлас,

Рис. 4. Фрагменты спектра α Lyr с "треугольными" (VII(9)4067.0, FeII(37)4491.4 и TiII(18), FeII(222)4493.5 Å) и "прямоугольным" (FeI(559)4068.0 и FeI(68)4494.6 Å) профилями абсорбций.

но получен при той же конфигурации спектрографа и в одну ночь со спектрами α Lyr, α Cyg и KS Per.

Принимая во внимание слабость межзвездных линий в спектрах наших объектов и их блендирование в спектрах β Ori и α Cyg более сильными звездными линиями, можно заключить, что систематические ошибки приводимых лучевых скоростей вряд ли превышают 1 км/с.

Из обширного первоначального списка линий нами было оставлено свыше 2000 отождествленных линий, оптимальных для позиционных измерений. Подготовленный таким образом список линий и спектральный атлас доступны по Web-адресу http://www.sao.ru/hq/ssl/UV-atlas-SG/atlas.html.

3. ОПИСАНИЕ АТЛАСА

Спектры объектов представлены в атласе в виде графиков (см. пример на Рис. 2) и таблиц. Для примера мы приводим только несколько начальных страниц из обширной Табл. 3, что составляет около 8% этой таблицы. Рисунки содержат графики зависимостей остаточной интенсивности от лабораторной длины волны, они размещены один под другим в том же порядке, что и объекты в Табл. 1. Для каждой звезды данные $r(\lambda)$ отдельных эшельных порядков были соединены в единый массив, который затем был разбит на фрагменты по 50 Å. В каждом из фрагментов атласа спектра указано отождествление нескольких линий.

В первых двух столбцах Табл. 3 приводятся результаты отождествления линий: название химического элемента, номер мультиплета и использованные лабораторные длины волн по [8, 9]. В последующих столбцах этой таблицы для каждой звезды приведены центральные остаточные интенсивности абсорбций "г" и гелиоцентрические лучевые скорости Vr в км/с, измеренные по абсорбционным ядрам одиночных линий либо четко выделяющихся компонентов бленд. Мы используем центральные остаточные интенсивности вместо эквивалентных ширин для удобства сопоставления табличных данных с графическими. Горизонтальные линии в таблице разделяют одиночные линии и бленды.

504

Использованные критерии отождествления линии стандартны: относительная интенсивность в ансамбле линий данного элемента в данной стадии ионизации, лучевая скорость и форма профиля. Но атлас позволял учесть изменение интенсивности от объекта к объекту. Критерий лучевой скорости также не сводился к контролю отождествления по отклонению значения Vr для данной линии от кривой Vr(r) для данной звезды, внимание обращалось и на положения соответствующей точки на графиках зависимостей Vr(r) для других объектов атласа (см. Рис. 3). При этом попутно осуществлен и метрологический контроль: проверены используемые лабораторные длины волн, в ряде случаев предложены их эффективные значения.

Далее рассмотрены особенности спектров отдельных объектов.

3.1. α Lyr

Коротковолновый участок нашего спектра сопоставим с длинноволновым участком спектра, полученного с помощью спектрометра орбитальной обсерватории "Copernicus": красная граница — 3187 Å, предел разрешения — 0.1 Å [12]. В перекрывающейся области 3055–3187 Åнаша Табл. 3 содержит 98 абсорбционных деталей, список из [12] — 82. Наши оценки их остаточных интенсивностей хорошо согласуются с оценками [12], если принятый в цитируемой работе уровень континуума понизить на 0.05. В области $\lambda > 3900$ Å в качестве контрольных использованы данные [13–16], полученные со спектральным разрешением и отношением сигнал-шум, превышающими наши. В нашем спектре хорошо видны абсорбции с г<0.995, для более глубоких линий остаточные интенсивности в Табл.3 и в указанных работах систематически не различаются. Известная особенность спектра Веги, "прямоугольные" профили некоторых линий (в основном нейтральных металлов), уверенно воспроизводится в нашем атласе (Рис. 4).

На Рис. 3 представлена зависимость лучевой скорости от остаточной интенсивности, Vr(r), для минимально блендированных линий в спектре α Lyr. Средние скорости по самым слабым и самым сильным линиям, а при данной интенсивности для разных элементов и стадий ионизации, в пределах ошибок одинаковы. Средняя гелиоцентрическая лучевая скорость для спектра в целом: -14.5 ± 0.2 км/с. По разбросу значков на Рис. 3 можно судить о суммарных (происходящих от неточностей лабораторных длин волн и вносимых при измерениях) погрешностях лучевых скоростей, приводимых в Табл. 3.

Таблица 3. Остаточные интенсивности и гелиоцентрические лучевые скорости для отдельных линий в спектрах *α* Lyr, *β* Ori, *α* Cyg и KS Per. Горизонтальные линии в таблице разделяют одиночные линии и бленды. В полном объеме таблица доступна по адресу http://www.sao.ru/hq/ssl/UV-atlas-SG/atlas.html

		α	Lyr	β	Ori	α	Cyg	KS	S Per
Ident	λ	r	Vr	r	Vr	r	Vr	r	Vr
FeII(181)	3055.37					0.71	-5:		
CrII(33)	3055.45								
TiII(47)	3056.77	0.78				0.69	-4:		
TiII(47)	3058.09					0.71			
TiII(5)	3059.52					-	-3:		
FeII(108)	3062.24	0.75	-11:			0.30	-3:		
TiII(47)	3063.50					0.75			
FeII(97)	3065.32					0.63	-2:		
TiII(5)	3066.30	0.65	-15:			0.48	-3:		
I.S.							-12.5		
FeI(56)	3067.12	0.85	-16:			0.68	-5:		
FeI(28)	3067.25								
FeII(122)	3068.76					0.86	-3.5:		
FeII(68)	3070.69	0.95	-15:			0.75	-2:		
TiII(47)	3071.24	0.92	-15.0			0.75			
TiII(5)	3072.10	0.82	-13.2			0.64	-3.0		

ЧЕНЦОВ и др.

Таблица 3. (Продолжение)

T 1 1	,		17			/	17		17
Ident T:U(5)	λ	r		r	Vr	r	Vr 25	r	Vr
$\frac{111(3)}{E_{0}11(68)}$	2075.99	0.70.	-14.5			0.40.	-5.5		
T = H(E)	2075.22	0.05	-14.0			0.42.	F		
1111(5)	3075.23					0.43:			
$\frac{1.5}{\text{EoII}(181)}$	2076 42					0.70.	-11.5		
$F_{\rm eII}(101)$	3077.17	0.86.	-14.5			0.70.	_J. _3·		
T:II(5)	2078.64	0.00.	-14.0			0.40.			
$\frac{\mathrm{THI}(3)}{\mathrm{THI}(110)}$	2021 59	0.75	-15.			0.30	-3.9		
$\frac{111(119)}{111(07)}$	2001.00					0.90.	-0.		
$\frac{\text{Fell}(97)}{C}$	3083.05					0.77:	-9:		
$\frac{\text{CrII}(47)}{2}$	3083.62					0.86:	4		
CrII(71)	3084.46	0.0 -	10			0.86:	-4		
Nill(7)	3087.08	0.95:	-18:			0.72	-3.5:		
Till(5)	3088.03	0.73	-15.5			0.42	-6.0		
TiII(90)	3089.41	0.89	-15.9			0.66	-6:		
TiII(119)	3090.05								
MgI(5)	3091.07	0.91	-16:			0.94			
MgI(5)	3092.99								
VII(1)	3093.10	0.67	-17:			0.51	-5:		
CrII(47)	3093.95					0.80:	-4:		
CrII(47)	3094.94					0.85:	-3:		
CrII(126)	3096.11								
FeII(97)	3096.31	0.90:				0.55:			
MgI(5)	3096.89								
Till(67)	3097.19	0.85:				0.65:	-3:		
CrII(86)	3098.16					0.85:	-7:		
FeI(28)	3099.94	0.90	-15:			0.98:	-4:		
VII(39)	3100.94					0.92	-6:		
NiI(25)	3101.56	0.86:	-12.5:			0.83:	-6:		
NiI(40)	3101.88								
VII(1)	3102.30	0.82	-16.0			0.58	-4:		
CrII(71)	3103.48								
TiII(90)	3103.80	0.90	-15:			0.72			
MgII(6)	3104.76:	0.87:	-12:	0.76	+11:	0.56:	-3:		
Till(67)	3105.09	0.87:	-17:						
TiII(67)	3106.29	0.87	-14.3						
FeII(68)	3106.55					0.63:			
CrII(125)	3107.57	0.95:	-14.9:			0.77	-5.2		
CrII(55)	3108.67:					0.85	-4:		
TiII(77)	3110.10	0.98:	-14:						
TiII(67)	3110.62								
VII(1)	3110.71	0.84	-15.3:			0.60	-5.5		

			таолица	13. (11)	зодолже	ение)			
Ident	λ	r	Vr	r	Vr	r	Vr	r	Vr
CrII(55)	3111.95	0.94							
TiII(67)	3112.07					0.81			
VII(174)	3113.59								
FeII(82)	3114.30	0.92	-15.8:	0.88	9.5:	0.60			
FeII(82)	3114.69	0.95:				0.83:			
CrII(54)	3115.28								
FeII	3115.36								
FeII(96)	3115.49	0.95				0.77			
FeII(82)	3116.59	0.90	-14:	0.90:	9:	0.63	-2.5		
FeII(226)	3117.51								
TiII(67)	3117.67	0.88	-15:			0.75	-5:		
VII(1)	3118.38								
CrII(5)	3118.65	0.73		0.87	—	0.33	-7:		
TiII(67)	3119.80	0.91	-14.8						
CrII(5)	3120.37	0.76	-15.0	0.81	8.0	0.35	-4.1		
VII(1)	3121.15	0.93	-15.5:			0.79:	-6:		
CrII(72)	3121.87	0.95				0.82	-4:		
CrII(55)	3121.96								
CrII(54)	3122.60	0.91	-14.2	0.94:	_	0.63	-2:		
CrII(5)	3124.98	0.70		0.77	8.6	0.34	-2:		
CrII(70)	3125.02								
VII(1)	3125.29								
VII(1)	3126.22	0.92	-14.5			0.78	-5.3		
TiII(121)	3127.88								
CrII(5)	3128.70	0.82	-15.1	0.90	9.8	0.44	-3.5		
VII(1)	3130.27	0.91	-13:			0.75			
TiII(4)	3130.80	0.91	-15.3			0.72			
CrII(5)	3132.06	0.73	-15.0	0.76	6:	0.33	-6.2		
FeII(82)	3133.06			0.94	9:				
SeII(39)	3133.10					0.60			
VII(1)	3133.34	0.93	-15.5:						
FeII(121)	3134.17								
CrII(94)	3134.33	0.92:				0.77			
FeII(82)	3135.36	0.93		0.85	8:	0.47			
MnII(15)	3135.51								
CrII(94)	3135.70								
CrII(5)	3136.69	0.81	-15.8	0.92	-11:	0.44	-4.7		
CrII(54)	3137.55					0.93:			
ZrII(5)	3138.68					0.97	-7:		
VII(122)	3139.76	0.98							
CrII(124)	3140.22	0.96		0.96	7:	0.76			

Таблица 3. (Прололжение)

ЧЕНЦОВ и др.

Таблица 3. (Продолжение)

				\ I					
Ident	λ	r	Vr	r	Vr	r	Vr	r	Vr
VII(152)	3141.49					0.98:	-4:		
FeII(7)	3142.22								
VII(52)	3142.48	0.97				0.84			
CrII(85)	3142.74								
TiII(4)	3143.76	0.91	-14.8			0.77	-5.2		
VII(122)	3144.73	0.96:		0.95	9.5	0.69			
CrII(5)	3145.10	0.95:							
CrII (85)	3145.77					0.91	-4:		
VII(1)	3145.98								
CrII(5)	3147.23	0.83	-14.9	0.93	8.0	0.51	-4.0		
TiII(4)	3148.04	0.90	-15.5	0.98:	_	0.75	-5.5		
CrII(54)	3149.84	0.95:		0.97:	_	0.69			
CrII(54)	3150.11								
VII(138)	3151.32					0.96	-4:		
FeI(311)	3151.36	0.98	-14:						
TiII(10)	3152.25	0.87	-15.6						
FeII(66)	3154.20	0.79	-15.0	0.73	9.0	0.41	-4.2		
TiII(10)									
TiII(10)	3155.67	0.90	-15.0	0.97:		0.74	-3:		
FeII(67)	3155.95								
TiII(4)	3157.40	0.98:				0.90	-5.2		
CrII(70)	3158.03	0.97	-15.5:			0.87	-6.0		
CaII(4)	3158.87	0.70	-14.5	0.89	9.5:	0.58	-2:		
CrII(54)	3160.11	0.98:	-14.4:			0.95	-2:		
TiII(10)	3161.20	0.87	-14.7			0.69	-2.5		
TiII(10)	3161.77	0.80				0.54			
FeII(7)	3161.95			0.94	7.5:				
TiII(10)	3162.56	0.80				0.47			
FeII(120)	3162.80			0.88	9.6				
FeII(7)	3163.10	0.91:							
CrII(69)	3163.93					0.90			
VII(8)	3164.83					0.94	-4:		
TiII	3164.90								
ZrII(5)	3165.95					0.94	-6:		
FeII(6)	3166.67	0.93	-15.0			0.69	-3.8		
FeII(66)	3167.86	0.84	-14.7	0.80	+9.2	0.47	-3.5		
TiII(10)	3168.52	0.82	-14.9			0.61	-5.5		
CrII(123)	3169.19	0.98	-14:			0.88	-5:		
FeII(6)	3170.34	0.88	-14.8	0.91	7	0.58	-3.9		
CrII(71)	3172.08	0.95	-14.4			0.77	-5.6		
CrII(83)	3173.58	0.99	-17:			0.95	-6:	0.46	3:

			таоттца		оодотние	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Ident	λ	r	Vr	r	Vr	r	Vr	r	Vr
FeIII(38)	3174.09			0.97:	10.5:				
FeII(157	3175.08	0.99:				0.89	-4.9		
MgII(13)	3175.78								
FeII(82)	3177.54	0.87	-15.5	0.82	7.5	0.47	-4.6	0.32:	4:
CaII(4)	3179.34	0.65	-13.2:	0.78	_				
FeII(157)	3179.49					0.49			
FeII(157)	3180.13	0.94							
FeIII(38)	3180.14			0.90:	_				
CrII(9)	3180.73	0.79	-17:	0.89:	9:	0.47	-6.7		
CaII(4)	3181.27	0.74		0.93:	8.5:				
CrII(9)	3181.42					0.62			
FeII(7)	3183.12	0.83	-13:	0.88	9.7	0.49	-2:		
TiII(3)	3184.12	0.99:							
CrII(123)	3184.36					0.94			
SiIII(8)	3185.13								
FeII(7)	3185.32	0.91	-15.0	0.94	8.5:	0.65	-4.4	0.36	
FeII(6)	3186.74	0.80	-15.0	0.78	11	0.41	-3.0		
FeII(120)	3187.30	0.91	-15.1			0.57	-5.5		
VII(8)	3187.71	0.95							
HeI(3)	3187.75			0.78	10.5:				
VII(8)	3188.53:	0.94	-15.1:			0.81	-6.5:	0.39:	4:
TiII(120)	3189.48	0.99	-15.5:						
CrII(123)	3189.83					0.97:	-5:		
VII(8)	3190.69								
TiII(26)	3190.87	0.79		0.96	—	0.54	-7:		

Таблица 3. (Продолжение)

3.2. β Ori

Опубликованные спектры β Ori, отобранные как наиболее пригодные для сопоставления с нашим, получены с помощью спектрометра "Copernicus" [17] и спектрографа UVES 8.2-м телескопа ESO, Paranal (спектр взят из архи-Ba UVES: http://www.sc.eso.org/santiago/ /uvespop/interface.html и обработан нами). Спектр "Сорегпісиз" простирается до 3214 А, спектр UVES начинается с 3044 А, предел разрешения в первом 0.4 Å, во втором — на порядок выше. Наиболее коротковолновый представительный интервал длин волн: 3104-3214 А. В нем наша Табл. 3 содержит 47 абсорбционных деталей, список из [17] — 37, а спектр UVES — 58. Центральные глубины абсорбций в этом интервале нашего спектра больше, чем в спектре UVES, на 6%, с увеличением длины волны систематическое

различие глубин линий постепенно уменьшается и, начиная с $\lambda\approx 3300$ Å, исчезает.

Зависимости Vr(r) для β Ori представлены на Рис. 3 и обобщены в Табл.4. Для сравнения в таблице приведены данные, полученные нами по спектру UVES. Оба спектра фиксируют расширение атмосферы β Ori: все измеренные скорости меньше скорости звезды в целом, $V_{sys} = 18.7 \text{ км/c}$ [18]. Уверенно выявленные дифференциальные сдвиги групп линий, формирующихся в разных слоях атмосферы, говорят о нарастании скорости расширения с высотой слоя: Vr(HeI)>Vr(SiII)>Vr(FeII). Сильнейшие линии HI и FeII находятся за красной границей нашего спектра, поэтому существенных сдвигов внутри групп не заметно, но в сходном с нашим спектре UVES отчетливо видны характерные для β Ori [18] бальмеровский прогресс и "железный регресс" (красный сдвиг членов 42-го мультиплета относительно более слабых абсорбций FeII).

Группы линий	НЭС	UVES
	20.10.08	22.09.02
Линии нейтральн	а	
Серия Бальмера	12.5	17.5 - 14.0
$H\alpha$		7.0
Серия Пашена		17.5
HeI	13.1 - 12.7	17.0 - 15.5
CII,NII,OII	13.0	16.2 - 17.4
AlIII, SiIII	12.7	16.8
SII, FeIII	12.8	14.8
MgII, SiII, CaII	10.0	12.5 - 13.5
FeII	8.8	10.0 - 13.5

Таблица 4. Средние гелиоцентрические лучевые скорости для групп линий в спектре β Ori

Таблица 5. Средние гелиоцентрические лучевые скорости в спектре α Cyg 19.10.08

Область спектра	r = 0.95	r = 0.35	r = 0.25
$\lambda < 3600{\rm \AA}$	-5.2	-4.0	
$\lambda > 3700{\rm \AA}$	-4.8	-3.2	
HI(Balmer)	-3:	-2:	-2:
$H\gamma$			-6.0

3.3. α *Cyg*

Область перекрытия нашего спектра α Суд со спектром, полученным с помощью заатмосферного спектрометра IUE [19], невелика: 3055–3100 Å. Все детали IUE-спектра воспроизведены в Табл. 3, но неопределенность уровня континуума в нем затрудняет сравнение остаточных интенсивностей, как и в случае с α Lyr. С красной стороны от бальмеровского предела для контроля использован атлас [20], представляющий спектр α Суд с разрешением, близким к нашему, но с более высоким отношением сигнала к шуму. Все абсорбции из этого атласа с r<0.995 различимы и в нашем спектре, остаточные интенсивности систематически не различаются.

На Рис. З заметен небольшой радиальный градиент скорости в атмосфере α Суg: цепочки значков, представляющие участки спектра по разные стороны от бальмеровского предела, заметно сдвинуты друг относительно друга по вертикали ("длинноволновая" лежит выше "коротковолновой") и наклонены (Vr растет с уменьшением г). Отметим также отрицательный сдвиг линии $H\gamma$ относительно более высоких членов серии Бальмера: зона формирования ее ядра заходит, по-видимому, в основание ветра. Опорные точки кривых Vr(r) на Рис. 3 даны в Табл. 5.

3.4. KS Per

Фрагмент Рис. 3, относящийся к KS Per, резко отличается от верхних: зависимость Vr(r) для KS Per ограничена r<0.7, а большая часть значков на Рис. 3 сосредоточена в области r<0.5. Как и в случаях других объектов, из Табл. 3 для KS Per отбирались линии, минимально искаженные блендированием, и, естественно, таковые находились в основном среди наиболее сильных линий. Линии в спектре KS Per не очень широки (по нашей оценке проекция скорости вращения $V \sin i \approx 30 \, \text{км/c}$), но дефицит водорода увеличивает прозрачность в континууме и тем самым создает густой абсорбционный "лес", особенно в ультрафиолете [3]. Дифференциальные сдвиги разных групп линий не выявлены. Среднее значение гелиоцентрической лучевой скорости по нашему спектру: 6.2 ± 0.4 км/с, что близко к значениям γ -скорости из работ [21, 22]: 7 \pm 1 км/с и 3 \pm 2 км/с соответственно.

БЛАГОДАРНОСТИ

Работа поддержана грантами Российского Фонда Фундаментальных Исследований (проекты 11-02-00319 а и 09-07-00492 а). В.Е.П. благодарит программу ОФН РАН за поддержку программы спектроскопии звезд в УФ-диапазоне на 6-метровом телескопе. В работе использованы данные из баз SIMBAD и SAO/NASA ADS.

СПИСОК ЛИТЕРАТУРЫ

- 1. V. E. Panchuk, V. G. Klochkova and M. V. Yushkin, Bull. Spec. Astrophys. Obs. **65**, 174 (2010).
- 2. M. Parthasarathy, D. Branch, D. J. Jeffery, and E. Baron, New Astron. Review **51**, 524 (2007).
- 3. T. Kipper and V. Klochkova, Baltic Astron. 17, 195 (2008).
- V. E. Panchuk, V. G. Klochkova, M. V. Yushkin, and I. D. Najdenov, Optical Technology Journal 76, 87 (2009).
- V. E. Panchuk, V. G. Klochkova, M. V. Yushkin, and M. V. Yakopov, Bull. Spec. Astrophys. Obs. 64, 392 (2009).
- 6. М. В. Юшкин и В. Г. Клочкова, Препринт № 206, (Нижний Архыз, САО РАН, 2005).
- 7. Г. А. Галазутдинов, Препринт № 92, (Нижний Архыз, САО РАН, 1992).
- 8. Ф. Р. Стриганов и Г. А. Одинцова, *Таблицы спектральных линий атомов и ионов*, (М. Энергоиздат, 1982).

- 9. A. K. Pierce and J. B. Breckinridge, Contr. Kitt Peak Obs. No. 559 (1973).
- R. J. Price, I. A. Crawford, M. J. Barlow, and I. D. Howarth, Monthly Notices Roy. Astronom. Soc. 328, 555 (2001).
- D. E. Welty, D. C. Morton, and L. M. Hobbs, Astrophys. J. Suppl. 106, 533 (1996).
- 12. J. B. Rogerson, Astrophys. J. Suppl. 71, 1011 (1989).
- A. F. Gulliver, S. J. Adelman, C. R. Cowley, and J. M. Fletcher, Astrophys. J. 380, 223 (1991).
- 14. Y. Takeda, S. Kawanomoto, and N. Ohishi, Publ. Astronom. Soc. Japan **59**, 245 (2007).
- 15. Y. Takeda, S. Kawanomoto, and N. Ohishi, Astrophys. J. **678**, 446 (2008).
- 16. H–S. Kim, I. Han, G. Valyavin, et al., Publ. Astronom. Soc. Pacific **121**, 1065 (2009).

- 17. P. L. Selvelli, L. Crivellari, and R. Stalio, Astronom. and Astrophys. Suppl. Ser. **27**, 1 (1977).
- E. L. Chentsov, IAU Coll. 169, Variable and nonspherical winds in luminous hot stars, Ed. by B. Wolf, O. Stahl, and A. W. Fullerton, (Springer, 1999), p.206.
- 19. L. Sapar and A. Sapar, Tartu Astrof. Obs. Teated, **108**, 3 (1990).
- 20. B. Albayrak, A. F. Gulliver, et al., D. Kocer, Astronom. and Astrophys. **400**, 1043 (2003).
- 21. J. F. Heard, Publ. David Dunlap Obs. 2, 269 (1962).
- 22. R. Margoni, R. Stagni, and A. Mammano, Astronom. and Astrophys. **75**, 157 (1988).

ATLAS OF SPECTRA OF SELECTED STARS IN GROUND-BASED ULTRAVIOLET

E.L. Chentsov, V.G. Klochkova, T. Kipper, N.S. Tavolzhanskaya, V.E. Panchuk, M.V. Yushkin

We present an atlas of spectra of high signal-to-noise ratio and high spectral resolution ($R \ge 60000$) in a poorly studied short-wavelength region up to 3055 Å. The spectra of well-studied stars of close temperatures (β Ori, α Lyr and α Cyg) are compared with the spectrum of a low-metallicity A-type supergiant KS Per, the atmosphere of which is poor in hydrogen, H/He = 3×10^{-5} . We study the velocity field in the expanding atmospheres and envelopes of these stars. A complete atlas and detailed identification of spectral features are available in the Internet.

Key words: *stars: general: atlases*