УДК 524/72-33:524.78; 524.85

СТРУКТУРЫ НИЗКОЙ ПЛОТНОСТИ В МЕСТНОЙ ВСЕЛЕННОЙ. II. БЛИЗКИЕ КОСМИЧЕСКИЕ ПУСТОТЫ

© 2013 А. А. Элыив^{1,2}, И. Д. Караченцев³, В. Е. Караченцева¹, О. В. Мельник^{4,2}, Д. И. Макаров³

¹Главная астрономическая обсерватория НАН Украины, Киев, 03680 Украина ²Institut d'Astrophysique et de Geophysique, Université de Liège, B5C Belgium ³Специальная астрофизическая обсерватория РАН, Нижний Архыз, 369167 Россия ⁴Астрономическая обсерватория Киевского национального университета им. Тараса Шевченко, Киев, 04053 Украина Поступила в редакцию 13 ноября 2012 года; принята в печать 27 ноября 2012 года

Мы представляем результаты поиска в Местном сверхскоплении и его окрестностях сферических объемов, где отсутствуют галактики со светимостью ярче Магеллановых Облаков. В пределах расстояния 40 Мпк обнаружено 89 космических пустот (войдов) с диаметрами от 24 до 12 Мпк, которые не содержат галактик с абсолютными величинами $M_K < -18.4$. Приведен список этих войдов и карты распределения на небе. Оказалось, что 93% сферических войдов пересекаются друг с другом, образуя три более протяженные перколированные пустоты (гипервойды). Самый крупный из них, HV1, насчитывает 56 исходных сферических ячеек и простирается в виде подковы, огибающей Местный объем и скопление Virgo. Местный войд Tully в области Hercules-Aquila является ближайшей частью HV1. Другой гипервойд, HV2, объединяет в себе 22 сферических войда в созвездии Eridanus, а третий компактный (HV3) — 6 сферических ячеек в Bootes. Суммарный объем указанных пустот занимает около 30% объема Местной вселенной. Среди 2906 карликовых галактик, исключенных из исходной выборки (n = 10502) при поиске сферических пустот, только 68 попадают в обнаруженные нами пустоты. Они характеризуются поздними морфологическими типами (85% - Ir, Im, BCD, Sm), абсолютными звездными величинами M_B от -13.0 до -16.7, умеренным звездообразованием ($\log {
m SSFR} \sim -10 \ M_{\odot} \ {
m yr}^{-1} L_{\odot}^{-1}$) и запасами газа на единицу светимости в 2–3 раза больше, чем у других карликовых галактик в нормальном окружении. Карликовое население войдов показывает определенную тенденцию располагаться неглубоко вблизи поверхности космических пустот.

Ключевые слова: космология: крупномасштабная структура Вселенной

1. ВВЕДЕНИЕ

В картине крупномасштабной структуры Вселенной, часто называемой Космической Паутиной, основным элементом являются обширные области низкой плотности, отделенные друг от друга "стенками" и волокнами. Первые наблюдательные свидетельства существования гигантских пустот (войдов) появились около 30 лет назад [1-3], но в прочный обиход понятие космических пустот внедрилось с появлением массовых обзоров красных смещений галактик. По современным данным, размеры этих пустот лежат в широком диапазоне от супервойдов диаметром около 200 Мпк [4] до минивойдов диаметром около 3-5 Мпк [5]. Сложилось представление, что характерная плотность числа галактик в космических пустотах по крайней мере на порядок ниже глобальной средней плотности.

В литературе можно найти немало работ, где рассматривается статистика размеров и формы войдов, а также особенности их населения. Недавний обзор этих исследований был представлен в [6]. Разными авторами были использованы различные алгоритмы выделения войдов в массовых обзорах неба. Некоторые из них предполагали полное отсутствие в войдах галактик до фиксированного уровня светимости. Другие критерии допускали возможность наличия в областях низкой плотности малого числа галактик нормальной светимости. В последнем случае эти области следовало бы называть скорее не войдами, а лакунами.

До сих пор остаются невыясненными два важных вопроса: 1) существуют ли космические объемы, полностью лишенные галактик, 2) видны ли признаки расширения войдов в кинематике галактик, которые его окружают. Ответы на эти вопросы тесно связаны с выбором наиболее правдоподобного сценария формирования крупномасштабной структуры [6, 7]. Очевидно, что наилучшие возможности исследовать карликовое население войдов и кинематику галактик вокруг них предоставляют самые близкие войды. Составляя атлас близких галактик, Талли и Фишер [8] обнаружили гигантскую пустую область в созвездиях Aquila-Hercules, которая начинается сразу за порогом нашей Местной группы галактик и занимает около четверти всего неба. Внутри этого Местного войда пока обнаружено всего две карликовые галактики: КК 246 [9] и ALFAZOA J1952+1428 [10] с абсолютными В-величинами, соответственно, $-13^{\rm m}_{\cdot}7$ и $-13^{\rm m}_{\cdot}5$. Анализ данных о лучевых скоростях и расстояниях галактик в окрестностях Местного войда указывает на расширение его границ со скоростью около 300 км/с [11].

Используя обзоры красных смещений галактик 2dFGRS [12] и SDSS¹ [13], Патири и др. [14] и Хойл и др. [15] выделили большое количество далеких войдов на типичных расстояниях $z \sim 0.1$. Однако, мы не обнаружили в литературе систематического списка войдов в более близком объеме, на шкале $z \sim 0.01$. Перечисление близких пустот на южном и северном небе с указанием их приблизительных контуров можно найти в манускрипте [16]. Пустильник и Теплякова [17] исследовали свойства карликовых галактик в области близкого войда Lynx—Cancer. Сэйнтонг и др. [18] отметили наличие близкого ($V \sim 2000$ км/с) войда в созвездии Pisces по данным ALFALFA обзора [19].

В первой статье цикла [20] мы выделили методом перколяции диффузные агломераты галактик Местного сверхскопления, находящиеся в областях пониженной плотности материи, и обсудили свойства наиболее населенных невириализованных структур. В настоящей работе мы описываем алгоритм выделения пустот в Местном сверхскоплении, приводим список близких (до 40 Мпк) войдов и кратко обсуждаем свойства карликовых галактик, находящихся в близких войдах.

2. ИСХОДНАЯ ВЫБОРКА ГАЛАКТИК

Для поиска войдов в Местной вселенной мы использовали выборку 10 502 галактик с лучевыми скоростями $0 < V_{LG} < 3500$ км/с относительно центроида Местной группы. Выборка охватывает как северное, так и южное небо, за исключением низких галактических широт $|b| < 15^{\circ}$. Для этих галактик, представленных в последних

версиях HyperLeda² [21] и NED³ были уточнены их видимые величины и морфологические типы. Поскольку звездная масса галактики наилучшим образом выражается через ее светимость в *К*-полосе, мы использовали *К*_s-светимости галактик из 2MASS обзора [22]. При отсутствии этих данных, видимые К-величины определялись нами по видимым В-величинам и среднему показателю цвета $\langle B - K \rangle$ в отдельности для каждого морфологического типа, согласно [22]. Из исходной выборки мы исключили слабые галактики с K >15^m0, а также объекты с отрицательными лучевыми скоростями. При параметре Хаббла $H_0 = 73$ км/с/Мпк модуль расстояния для дальней границы нашей выборки соответствует m - M = 33.^m4. Чтобы условия, используемые для выделения войдов, были подобными как в близких, так и в далеких областях нашего объема, мы исключили из анализа карликовые галактики с абсолютными величинами слабее $M_K = -18.4$. Этот порог приблизительно соответствует светимости карликов типа Малого Магелланова Облака. При этом, расстояния до галактик определялись по их лучевой скорости с приведенным выше значением H_0 .

Верхняя и нижняя панели Рис. 1 показывают, соответственно, распределение на небе 7596 ярких галактик с $M_K < -18.4$ и 2906 карликовых галактик, исключенных из процедуры выделения войдов. Обе подвыборки демонстрируют эффекты скучивания в группы и скопления, а также концентрацию к экватору Местного сверхскопления. На распределении карликов сказывается их избыточная перенаселенность в объемах близкого скопления Virgo и облака Canes Venatici I, а также повышенная плотность галактик с известными красными смещениями в области обзора SDSS [13].

3. АЛГОРИТМ ВЫДЕЛЕНИЯ ВОЙДОВ

Для каждой из 7596 галактик с $M_K < -18.4$ в пределах расстояния $D = V_{LG}/73 = 48$ Мпк мы вычисляли декартовы экваториальные координаты X, Y, Z. Затем в этом объеме, с учетом ограничения по галактической широте, проводился поиск сферы максимального радиуса R, в которой нет ни одной галактики. С этой целью осуществлялся перебор всех возможных координат центра сферы и ее радиуса. Дискретность перебора была выбрана равной 1.5 Мпк из соображений времени счета (компромисс между точностью и необходимым компьютерным временем). Граничные условия выражались в том, чтобы центр искомого войда

¹Sloan Digital Sky Survey (http://www.sdss.org).

²Lyon Database for Physics of Galaxies

⁽http://leda.univ-lyon1.fr).

³NASA/IPAC Extragalactic Database

⁽http://nedwww.ipac.caltech.edu).

лежал внутри D = 48 Мпк и не попадал в конус Млечного Пути $|b| < 15^{\circ}$.

Далее мы искали следующий войд максимального радиуса, внутри которого нет ни одной галактики. К граничным условиям добавлялось новое: чтобы центр искомого войда находился вне объема предыдущего войда. Эта процедура повторялась многократно с учетом положений и размеров всех предыдущих войдов. Данный процесс продолжался по достижении числа войдов $n \ge 100$. В результате мы получили совокупность 179 пустых сферических объемов с радиусами от 12 до 6 Мпк, многие из которых частично перекрываются друг с другом.

Очевидно, что в использованном алгоритме имеется несколько параметров, выбор которых влияет на конечный список войдов. Одним из них является принимаемое минимальное расстояние центра войда от границ объема, а также минимальное расстояние между центрами войдов. Другим параметром выступает пороговая абсолютная величина карликовых галактик ($M_K = -18.4$), возможное попадание которых в пустой объем игнорируется. Третьим параметром является минимальный радиус сферического войда ($R_{\min} = 6.0$ Мпк), на котором обрывается применение алгоритма.

Попытка отказаться от сферичности выделяемых пустых объемов, как это делали Тихонов и Караченцев [5], значительно усложняет алгоритм. Кроме того, на основе сравнения данных SDSS DR7 с распределением галактик модельного каталога Millenium 1 Тавасоли и др. [23] показали, что форма войдов тяготеет к сферической. При необходимости несферические пустоты в нашем подходе могут быть получены объединением двух или нескольких пересекающихся сферических объемов в их ассоциацию: "гантель", "бумеранг" или "цепочку".

4. СПИСОК ПУСТЫХ ОБЪЕМОВ В МЕСТНОЙ ВСЕЛЕННОЙ

Результаты поиска близких сферических войдов с помощью использованного алгоритма представлены в Таблице 1. Колонки таблицы содержат: (1) порядковый номер войда в принятой нами процедуре, когда на каждом последующем шаге выделяются пустоты все меньшего радиуса; (2) расстояние до центра войда в Мпк; (3, 4) экваториальные координаты центра войда в градусах; (5, 6) линейный и угловой диаметр войда; (7) примечания, которые фиксируют расположение 12 самых близких войдов в созвездиях, а также принадлежность данного пустого объема к более протяженным образованиям — гипервойдам (HV).

Следует отметить, что в таблице представлено только 89 войдов, ранжированных по расстоянию

Рис. 1. Распределение 7596 ярких (верхняя панель) и 2096 карликовых (нижняя панель) галактик с $V_{\rm LG} = 0-3500$ км/с в экваториальных координатах. Зона сильного поглощения с $A_B > 2^{\rm m}$ 0 изображена серой клочковатой полосой.

от наблюдателя до 40 Мпк, из общего числа 179.4 Мы исключили из списка половину самых далеких по следующей причине. Распределение интегрального числа войдов в зависимости от расстояния их центров D показывает, что вблизи дальней границы рассматриваемого объема в интервале D = 40 - 48 Мпк, имеется избыток числа войдов примерно в два раза по сравнению с однородным распределением $n \sim D^3$. Этот избыток возникает из-за уменьшения плотности числа галактик с измеренными лучевыми скоростями в самых дальних частях Местной вселенной. Кроме того, отсутствие информации о галактиках вне радиуса 48 Мпк приводит к увеличению вероятности обнаружить пустой объем и "налипанию" этих избыточных войдов на дальней границе.

Как следует из данных последнего столбца Таблицы 1, 83 войда из 89 пересекаются друг с другом, образуя три группировки гипервойдов: HV1, HV2 и HV3 с числом сферических войдов, соответственно, 56, 22 и 5. Некоторые параметры этих гипервойдов: суммарный объем, минимальное и максимальное расстояние поверхности гипервойда от наблюдателя, расстояние до центроида гипервойда, а также его положение на небе приведены в Таблице 2. Самый близкий гипервойд HV1 фактически является протяженной изогнутой гроздью пустых

⁴Полный список 179 войдов можно получить отправив запрос первому автору.

No.	<i>D</i> ,	RA,	Dec,	<i>R</i> ,	r,	Note	No.	<i>D</i> ,	RA,	Dec,	<i>R</i> ,	r,	Note
	Мрс	deg	deg	Мрс	deg			Мрс	deg	deg	Мрс	deg	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
38	8.7	301	0	7.5	59	HV1, Aqr	47	30.9	8	47	7.5	14	HV1
9	16.1	288	-28	9.0	34	HV1, Sgr	122	31.2	279	29	6.0	11	HV1
116	16.6	85	-5	6.0	21	HV1, Ori	26	31.5	141	-72	7.5	14	HV2
34	17.6	275	20	7.5	25	HV1, Her	161	31.8	16	-28	6.0	11	HV2
27	18.4	117	24	7.5	24	HV1, Gem-Leo	117	31.9	278	-45	6.0	11	HV1
136	19.1	360	45	6.0	18	HV1, And	159	32.0	329	-8	6.0	11	HV1
147	20.1	347	4	6.0	17	Psc-Peg	100	32.1	258	25	6.0	11	HV1
144	21.0	18	25	6.0	17	HV1, Psc	114	32.3	83	68	6.0	11	HV1
90	21.5	238	-25	6.0	16	HV1, Sco-Lib	35	32.4	79	-76	7.5	13	HV2
119	21.5	283	50	6.0	16	HV1, Dra	146	32.4	347	-52	6.0	11	HV2
135	21.8	309	12	6.0	16	HV1, Del	148	32.7	35	43	6.0	11	HV1
31	23.9	248	-70	7.5	18	HV1, Aps	157	32.8	32	-30	6.0	11	HV2
120	25.3	68	-71	6.0	14	HV2	156	32.9	29	33	6.0	11	HV1
107	25.6	265	50	6.0	14	HV1	2	33.1	339	39	12.0	21	HV1
118	25.6	279	-45	6.0	14	HV1	49	33.3	319	27	7.5	13	HV2
130	26.0	299	-44	6.0	13	HV1	165	33.5	22	-16	6.0	10	HV2
39	26.1	80	7	7.5	17	HV1	56	33.7	3	-21	7.5	13	HV1
123	26.6	288	58	6.0	13	HV1	124	34.0	291	-68	6.0	10	HV1
42	27.0	60	26	7.5	16	HV1	166	34.3	337	-3	6.0	10	HV1
140	27.1	29	46	6.0	13	HV1	51	34.6	3	-34	7.5	13	HV2
111	27.6	90	-45	6.0	13	HV2	13	34.7	50	18	9.0	15	HV1
96	27.7	249	22	6.0	13	HV1	40	34.7	77	12	7.5	13	HV1
154	27.7	22	29	6.0	12	HV1	3	34.7	59	-60	10.5	18	HV2
143	28.0	14	-49	6.0	12	HV2	104	34.8	263	0	6.0	10	HV1
150	28.0	319	-9	6.0	12	HV1	112	35.0	90	-47	6.0	10	HV2
99	29.0	254	-15	6.0	12	HV1	44	35.4	65	10	7.5	12	HV1
151	29.1	23	-38	6.0	12	HV2	75	35.4	205	10	6.0	10	HV3
86	29.5	125	-9	6.0	12		85	35.5	239	-10	6.0	10	HV1
79	29.7	204	6	6.0	12	HV3	108	35.6	265	62	6.0	10	HV1
8	30.1	101	40	9.0	17	HV1	141	35.6	60	-22	6.0	10	HV2
95	30.5	252	11	6.0	11	HV1	72	35.7	158	0	6.0	10	

Таблица 1. Список сферических пустот в Местной вселенной

No.	<i>D</i> ,	RA,	Dec,	<i>R</i> ,	r,	Note
	Мрс	deg	deg	Мрс	deg	
(1)	(2)	(3)	(4)	(5)	(6)	(7)
106	35.8	257	-67	6.0	10	HV1
15	35.9	324	10	9.0	15	HV1
102	35.9	106	53	6.0	10	HV1
145	35.9	303	-5	6.0	10	HV1
5	36.2	306	12	10.5	17	HV1
139	36.7	294	-10	6.0	9	HV1
4	37.2	40	-47	10.5	17	HV2
105	37.4	263	50	6.0	9	HV1
80	37.6	225	16	6.0	9	HV3
18	37.6	152	31	7.5	11	
109	37.7	117	-85	6.0	9	HV2
11	37.7	288	-23	9.0	14	HV1
12	37.9	56	31	9.0	14	HV1
91	38.0	210	71	6.0	9	
53	38.1	329	23	7.5	11	HV1
126	38.1	27	-80	6.0	9	HV2
60	38.3	2	-11	7.5	11	HV2
168	38.3	0	31	6.0	9	HV1
173	38.4	5	11	6.0	9	
97	38.6	257	33	6.0	9	HV1
160	38.7	13	-44	6.0	9	HV2
115	39.0	84	67	6.0	9	HV1
48	39.1	51	-32	7.5	11	HV2
74	39.4	216	11	6.0	9	HV3
153	39.4	18	-53	6.0	9	HV2
54	38.5	39	13	7.5	11	HV1
69	39.7	209	4	6.0	9	HV3

Таблица 1. (Продолжение)

сферических объемов, которая начинается сразу за границей Местной группы ($D_{\min} = 1.4 \text{ Мпк}$). Верхняя панель Рис. 2 представляет распределение на небе 56 войдов, входящих в HV1. Размеры кружков соответствуют угловым размерам сфери-

Рис. 2. Распределение войдов в проекции на небо в экваториальной системе координат: гипервойд HV1 (верхняя панель), гипервойды HV2 и HV3 (средняя панель), отдельные войды (нижняя панель). Размеры кругов соответствуют реальным угловым размерам войдов.

ческих войдов. Чтобы не заслонять другие войды, контур самого близкого войда № 38 (передняя часть Местного войда Талли [8]) изображен толстой прерывистой линией. Гипервойд HV1, отходя от Местной группы в области Hercules—Aquila, достигает границы рассматриваемого объема и, огибая в виде подковы Местный объем, приближается к нему со стороны Gemini—Leo. Подковообразная форма зоны низких плотностей, охватывающих скопление Virgo, хорошо видна на Рис. 6 в [24].

Рис. З более детально показывает HV1 в трех проекциях относительно сверхгалактической плоскости. Поскольку гипервойд имеет сложную структуру, мы показали его со стороны отрицательных и положительных направлений осей, перпендикулярно к рассматриваемой плоскости, на левой и правой панелях рисунка, соответственно. Рассто-

Рис. 3. Проекция гипервойда HV1 на сверхгалактическую плоскость SGX–SGY (верхняя панель), SGX–SGZ (средняя панель), SGY–SGZ (нижняя панель). Вид с отрицательных (слева) и положительных (справа) направлений осей Z, Y, X показан на трех панелях, соответственно. Квадратиком обозначен центр скопления Virgo.

яния до определенной плоскости характеризуются шкалой под рисунком. Верхняя панель показывает проекцию на плоскость SGX-SGY, средняя — на SGX-SGZ, нижняя — на SGY-SGZ. Концентрические окружности имеют шаг 10 Мпк. Можно видеть, что HV1 отходит от сверхгалактической плоскости довольно далеко вплоть до 40 Мпк. В проекциях SGX-SGZ и SGY-SGZ четко видно, что гипервойд огибает Местную группу. Сравнивая проекции гипервойда HV1 на Рис. 3 с соответствующими отображениями Местного и Virgo войдов из работы [24], можно заключить, что примерно 2/3 объема HV1 совпадает с суммарным объемом Mecthoro и Virgo войдов.

Средняя панель Рис. 2 воспроизводит распределение на небе 22 сферических пустот, сливающихся в гипервойд HV2 в области Eridanus и 5 войдов, входящих в более компактный гипервойд HV3 в созвездии Bootes. На нижней панели Рис. 2 представлены 6 обособленных сферических войдов, поверхности которых не соприкасаются с другими пустыми объемами, выделенными нашим алгоритмом. Здесь уместно напомнить, что мы ограничились поиском войдов с линейным радиусом не менее 6 Мпк. Можно предполагать, что существует еще множество мелких пустот, которые пересекаются с уже выделенными войдами и увеличивают их общий объем.

5. КАРЛИКОВОЕ НАСЕЛЕНИЕ БЛИЗКИХ ВОЙДОВ

Суммируя объем войдов, представленных в Таблице 1, мы получаем, что они занимают около 30% рассматриваемого объема Местной вселенной до 40 Мпк. Эта оценка учитывает факт перекрытия сферических пустот, входящих в гипервойды. При поиске близких войдов мы исключили из рассмотрения 2906 карликовых галактик. Если бы эта популяция была распределена в пространстве Местной вселенной равномерным образом, то ожидаемое число карликовых галактик в войдах составило бы около 1000. Реальное же их число, N = 48 до 40 Мпк и N = 68 до 48 Мпк, не достигает даже 1/10 от ожидаемого. То есть пустые объемы, свободные от галактик нормальной светимости, остаются почти пустыми и при рассмотрении карликовых галактик.

Список карликовых галактик, оказавшихся внутри 89 из выделенных нами войдов, представлен в Таблице 3. В столбцах таблицы содержатся следующие сведения о галактиках: (1) имя галактики или ее наличие в обзорах неба SDSS, 6dF, 2MASX, KUG, HIPASS, APMUKS; (2) экваториальные координаты на эпоху J 2000.0; (3) лучевая скорость относительно центроида Местной

Number of voids	56	22	5
Volume, Mpc ³	68469	23767	3440
D_{\min}, Mpc	1.4	19.4	23.8
$D_{\rm cen}, {\rm Mpc}$	13.8	30.5	35.8
D_{\max} , Mpc	46.9	47.6	45.6
RA_c , deg	22.2	2.4	14.2
$\mathrm{Dec}_{\mathrm{c}}, \mathrm{deg}$	+32	-51	+10
Sky region	Pegasus	Eridanus	Bootes

Таблица 2. Свойства трех местных гипервойдов

HV1

Hypervoids

HV2

HV3

группы (в км/с), использованная для определения расстояния при параметре $H_0 = 73$ км/с/Мпк; (4) морфологический тип; (5) видимая величина в В-полосе; (6) видимая ультрафиолетовая величина $m_{\rm FUV}$, ($\lambda_{\rm eff} = 1539$ Å, FWHM = 269 Å) по данным GALEX [27, 28]; (7) логарифм потока F_{HI} в линии нейтрального водорода ($F_{\rm HI}$ в единицах Ян×км/с); (8) абсолютная величина; (9) логарифм водородной массы $M_{\rm HI} = 2.36 \times 10^5 D^2 F_{\rm HI}$, где D — расстояние в Мпк; (10) логарифм темпа звездообразования $\log \mathrm{SFR} = 2.78 - 0.4 m_\mathrm{FUV}^\mathrm{c} + 2 \log D$ в единицах M_{\odot}/yr , где $m_{\mathrm{FUV}}^{\mathrm{c}}$ — ультрафиолетовая величина, исправленная за поглощение [29], а расстояние D выражено в Мпк; (11) глубина залегания галактики под поверхностью гипервойда (в Мпк); прочерк в этом столбце означает, что галактика находится на дальней окраине рассматриваемого объема (D > 40 Мпк), где становятся значимыми различные краевые эффекты; (12) примечания: крестиком (×) отмечены галактики из каталога близких изолированных галактик LOG [25], плюсом (+) — из списка изолированных карликовых галактик в Местном сверхскоплении [26]. Из анализа представленных в Таблице 3 данных можно сделать следующие заключения.

а) Распределение галактик в войдах по морфологическим типам резко сдвинуто в сторону самых поздних типов: Im, BCD, Ir по сравнению с выборками карликов в группах и общем поле. Карликовые галактики типов Im, BCD и Ir составляют примерно 65%, а вместе с Sm — до 85% выборки Таблицы З. Заметим, что среди очень

ЭЛЫИВ и др.

Таблица 3. Карликовые галактики в близких войдах

						-				-	
Name	J 2000.0	$V_{\rm LG}$	Туре	B_T	$m_{ m FUV}$	$\log F_{\rm HI}$	M_B	$\log M_{\rm HI}$	$\log \mathrm{SFR}$	Depth	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
ESO149-018	000714.5-523712	1744	Sdm	15.9	17.51	0.74	-16.04	8.87	-1.43	0.5	×
KK261	004058.7-261605	2726	Ir	17.6	18.20	0.42	-15.31	8.94	-1.32	1.1	
LSBCF682-01	005731.9+102148	2936	SBm	17.9	19.47	0.40	-15.40	8.98	-1.58	—	
ESO541-005	005918.1-203444	2006	Sdm	15.8	17.39	0.91	-16.49	9.16	-1.23	0.4	
UGC00655	010401.2+415035	1084	Sd	14.4	16.30	1.21	-16.75	8.93	-1.17	0.6	×
LSBGF352-021	012658.6-350542	2068	BCD	17.5	19.18	0.36	-14.85	8.63	-1.92	4.3	×
UGC01038	012747.4+431506	1473	Sm	17.0	18.67	0.14	-14.79	8.12	-1.87	0.6	
SDSS	013708.1-003354	3044	Sm	17.1	18.68	0.00	-16.12	< 8.61	-1.36	_	
ESO355-005	021839.7-363152	2399	Sm	17.2	18.45	0.58	-15.46	8.98	-1.50	0.5	×
ESO298-033	022128.7-384814	2142	Im	16.8	18.53	0.51	-15.62	8.81	-1.64	0.2	+
LCRS	025224.5-411633	3470	BCD	18.1	19.33	< 0.00	-15.37	< 8.72	-1.54	_	
6dF	051556.2-364418	1867	Ir	16.7	18.30	0.14	-15.51	8.33	-1.59	0.3	
ESO306-010	053415.6-391010	1921	Sm	16.7	17.91	0.76	-15.54	8.97	-1.44	2.4	
ESO554-017	053557.2-211451	1385	Sd	16.7	_	< 0.00	-14.83	< 7.93	_	0.6	
UGC03672	070627.6+301919	964	Im	15.4	17.23	1.23	-15.52	8.84	-1.62	1.6	$\times +$
UGC03876	072917.5+275358	811	Scd	13.7	_	1.06	-16.72	8.52	_	0.3	×
SDSS	080158.9+212219	1343	Ir	17.7	19.69	< 0.00	-13.84	< 7.90	-2.40	6.1	
LCSBS1123P	081715.9+245357	1832	dEn	17.3	>23	0.38	-14.88	8.55	-3.48	0.5	
SDSS	082712.8+265127	1779	Im	17.4	_	_	-14.76	_	_	0.7	×
SDSS	083641.1+051625	2933	BCD	17.8	18.94	< 0.00	-15.34	< 8.58	-1.50	_	
2MASX	083735.5+074831	1280	BCD	16.7	17.93	0.43	-14.66	8.29	-1.80	1.3	*
CAM0840+1044	084236.6+103314	3437	BCD	17.6	19.21	< 0.00	-15.98	< 8.72	-1.39	_	
SDSS	091001.7+325660	1388	Ir	17.1	18.95	_	-14.39	_	-2.17	1.0	
2MASX	091448.8+330115	1446	BCD	16.8	18.52	_	-14.76	_	-1.97	0.5	
KUG1028+412	103118.4+410226	2568	BCD	17.6	_	_	-15.18	_	_	0.4	×
SDSS	103950.9+564403	1216	Ir	17.5	17.87	_	-13.64	_	-1.90	_	
HS1059+3934	110209.9+391846	3267	BCD	17.7	18.51	_	-15.63	_	-1.26	_	
APMUKS	110541.0-000602	3160	Sm	18.0	19.47	< 0.00	-15.42	< 8.64	-1.55	_	**
SDSS	112149.2+585434	1596	Ir	17.0	18.65	_	-14.73	_	-1.98	_	
SDSS	124459.3+525203	2808	BCD	18.4	19.45	_	-14.59	_	-1.78	_	
ABELL1656:3237	125941.3+275015	3224	BCD	19.7	>23	_	-13.57	_	-3.10	—	
ABELL1656:2538	130040.1+274851	3495	BCD	20.3	>23	_	-13.14	_	-3.03	_	
SDSS	130905.4+134819	3223	Ir	18.0	20.16	-0.38	-15.32	8.28	-1.92	_	

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 68 № 1 2013

Name	J 2000.0	$V_{\rm LG}$	Туре	B_T	$m_{ m FUV}$	$\log F_{\rm HI}$	M_B	$\log M_{\rm HI}$	$\log \mathrm{SFR}$	Depth	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
SDSS	131011.7+135116	3279	BCD	18.1	20.51	-0.25	-15.26	8.42	-2.04	_	
SDSS	133753.5+635510	2813	BCD	17.8	20.52	_	-15.21	_	-2.19	1.0	
SDSS	135031.2-013758	2366	Im	19.0	19.80	< 0.00	-13.80	< 8.39	-1.93	0.8	
KKR2	140626.9+092133	3213	Sm	17.6	19.17	0.26	-15.74	8.92	-1.51	0.6	+
SDSS	151454.6+341439	2910	Im	18.3	19.66	_	-14.79	_	-1.81	—	
2MASX	151844.7-241051	1881	Sb?	16.6	>23	—	-16.13	_	-3.08	0.9	
SDSS	151939.3+385255	3122	BCD	17.5	19.44	_	-15.73	_	-1.68	—	
SDSS	152013.6+400301	2823	BCD	17.8	19.55	_	-15.22	-	-1.80	_	
SDSS	152644.5+403448	2890	BCD	17.8	20.16	_	-15.26	_	-2.03	—	
KKR26	161644.6+160509	2347	Im	17.8	19.03	0.45	-14.93	8.83	-1.67	0.8	$\times +$
LSBCF585-V01	162558.6+203949	2106	Ir	17.9	18.98	0.11	-14.65	8.40	-1.70	4.1	$\times +$
SDSS	163424.7+245741	1131	BCD	18.1	20.40	< 0.00	-13.03	< 7.75	-2.86	0.4	×
SDSS	170517.4+355222	1184	Im	17.5	18.69	_	-13.65	-	-2.20	0.7	
HIPAS \$1752-59	175251.4-594049	2596	Ir	17.2	—	0.52	-15.89	8.99	_	0.6	
UGC11109	180414.0+464414	1820	Sm	17.2	18.25	0.72	-14.97	8.88	-1.58	3.9	×
UGC11220	182325.5+405643	1706	Sm	16.7	17.00	0.98	-15.34	9.08	-1.13	1.7	×
HIPASS1926-74	192727.1-740458	2444	BCD	17.0	_	0.36	-15.91	8.78	_	2.4	×
KK246	200357.4-314054	572	Ir	17.1	20.01	0.90	-13.70	8.06	-2.43	4.5	×***
6dF	210804.9-471941	832	BCD	15.9	18.12	< 0.00	-14.53	< 7.48	-2.24	0.8	
LSBCF743-01	211845.4+082202	3203	Sm	17.5	18.13	0.46	-16.00	9.11	-0.96	0.6	
CGCG426-040	212006.0+115506	1415	BCD	16.4	18.64	0.34	-15.41	8.28	-1.82	1.7	
SDSS	212202.3+095311	3237	BCD	17.7	—	< 0.00	-15.77	< 8.66	_	0.4	
ESO531-001	213152.0-235632	2668	Sm	17.1	18.47	0.09	-15.92	8.59	-1.32	_	
UGC11771	213527.5+232805	1951	Sd	16.4	18.60	0.64	-16.17	8.86	-1.47	0.5	
UGC11813	214731.1+220951	2124	Sm	17.3	19.07	0.71	-15.51	9.01	-1.54	1.5	
SDSS	223036.8-000637	1758	BCD	17.4	—	-0.22	-14.81	7.92	_	0.4	
ADBS	225558.3+261011	2930	BCD	17.7	19.21	0.35	-15.79	8.93	-1.33	0.9	
LSBCF469-02	225721.5+275852	3233	Sm	18.3	18.25	0.46	-15.21	9.12	-1.01	_	×
SDSS	230511.2+140346	1801	BCD	17.3	19.38	< 0.00	-15.52	< 8.15	-1.52	0.3	
6dF	231803.9-485936	2275	BCD	16.9	18.42	< 0.00	-15.62	< 8.36	-1.56	3.8	×
KKR75	232011.2+103723	1703	Ir	18.0	19.48	0.54	-14.05	8.65	-2.11	1.9	$\times +$
LSBCF750-04	234420.2+100705	1726	Sd	17.3	18.62	0.40	-14.80	8.51	-1.74	0.7	
UGC12771	234532.7+171512	1535	Im	16.9	18.35	0.46	-14.96	8.48	-1.72	0.4	$\times +$

Таблица 3. (Продолжение)

Name	J 2000.0	$V_{\rm LG}$	Туре	B_T	$m_{ m FUV}$	$\log F_{\rm HI}$	M_B	$\log M_{\rm HI}$	$\log \mathrm{SFR}$	Depth	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
APMUKS	234650.9-301106	2926	BCD	18.2	19.61	< 0.00	-14.89	< 8.58	-1.80	0.7	
LSBCF750-V01	235419.6+105636	1164	Ir	18.0	19.66	< 0.00	-13.41	< 7.78	-2.37	0.4	

Таблица 3. (Продолжение)

Notes: * LEDA фиксирует значительное различие в оценках гелиоцентрической скорости этой галактики по оптическим данным SDSS (+1452 ± 19 км/с) и по HI измерениям в HIPASS (+2006 ± 8 км/с). Повторная обработка оптического спектра дает значение +2004 ± 15 км/с, близкое к оценке HIPASS.

** Значение лучевой скорости этой галактики, полученное [45] нуждается в подтверждении.

*** В колонке (3) указано формальное значение лучевой скорости, соответствующее расстоянию галактики 7.83 Мпк [9] и параметру H₀ = 73 км/с/Мпк. Имея лучевую скорость V_{LG} = +436 км/с, эта галактика движется к нам из глубины войда с пекулярной скоростью -130 км/с.

изолированных галактик каталога LOG [25] иррегулярные, BCD и Sm объекты составляют 51%. Только у двух галактик, J 0817+24 (тип dEn) и J 1518—24 (тип Sb?), их желтоватый цвет указывает на преобладание старого звездного населения. Обе они находятся возле поверхности войдов и имеют соседей с близкими значениями лучевых скоростей, т.е. входят в рассеянные группы, соприкасающиеся с войдами. Избыток иррегулярных голубых галактик среди выборок галактик в войдах и изолированных был отмечен также в работах [30—32].

b) Среди 60 карликовых галактик в близких войдах, наблюдавшихся с GALEX, только у четырех не были детектированы FUV-потоки. Две из этих галактик упомянуты выше как члены

Рис. 4. Зависимость между логарифмом темпа звездообразования SFR и абсолютной величиной M_B для 60 карликовых галактик в войдах. Незаполненными кружками показаны галактики с верхними оценками $m_{\rm FUV}$, которые не учитывались в параметрах регрессии: log SFR = $-0.39M_B - 7.65$, R = -0.82, SD = 0.22, где R — коэффициент корреляции, а SD среднеквадратичное отклонение.

групп, а две другие проектируются на центр богатого скопления Сота (= Abell 1656). Остальные объекты нашей выборки следуют довольно четкой корреляции между SFR и абсолютной величиной галактики (см. Рис. 4) с коэффициентом корреляции R = -0.82 и медианным значением удельного темпа звездообразования SSFR = $1 \times 10^{-10} M_{\odot} \, {\rm yr}^{-1} L_{\odot}^{-1}$, типичным для карликов поздних типов в Местном объеме [33].

с) Распределение карликовых галактик в войдах по логарифмам водородной массы и *B*-светимости представлено на Рис. 5 сплошными кружками. Верхние пределы оценки массы водорода *M_{HI}* показаны незаполненными кружками. Как следует из этих данных, карлики в войдах обладают повышенным содержанием водорода на едини-

Рис. 5. Распределение 51 карликовой галактики в войдах по логарифму водородной массы и *B*-светимости. Открытыми символами отмечены объекты с верхним пределом оценки $M_{\rm HI}$. Прямая линия соответствует $M_{\rm HI}/L_B = 1~M_{\odot}/L_{\odot}$.

цу светимости. Медианное значение для них, $M_{\rm HI}/L_B = 2.1 \ M_\odot/L_\odot$ оказывается примерно в три раза выше, чем для Ir, Im, BCD-галактик в группах и общем поле [34]. Другими словами, карликовые галактики в войдах обладают повышенными запасами газа по сравнению с галактиками таких же типов в более плотном окружении, что неоднократно отмечалось разными авторами [17, 26, 35-37, 43, 44]. Имея обычные темпы звездообразования на единицу светимости, $\log \text{SSFR} \simeq -10$, карлики в войдах способны поддерживать наблюдаемый темп звездообразования на шкале около 20-30 млрд. лет. В то же время в работах [31, 38], где рассматриваются свойства галактик в войдах в гораздо больших объемах (z < 0.09), показано, что хотя в целом галактики в войдах голубее и слабее, чем галактики в скоплениях, но в одинаковом диапазоне светимостей различий в цветах и темпах звездообразования не наблюдается.

d) Рис. 6 показывает распределение 48 галактик в близких (D < 40 Мпк) войдах по абсолютной величине и глубине нахождения под поверхностью гипервойда. Как видим, только четверть этих галактик залегает в войдах на глубине более 1.5 Мпк. Напомним, что в нашем алгоритме точность, с которой определялось положение центра сферического войда, составляла как раз 1.5 Мпк. Следовательно, многие карликовые галактики в этом пограничном слое могут находиться за пределами войдов. В любом случае, популяция карликовых галактик в сердцевинах войдов (Depth > 1.5 Мпк) оказывается представленной буквально единичными объектами типа их ближайшего и самого известного представителя КК 246 [39-41]. Заметим, что только 4 из 13 галактик, находящихся в середине войдов, являются "новыми". Остальные 9 указаны как изолированные в списках [25, 26]. Поскольку критерии отбора в настоящей и двух вышеназванных работах были абсолютно разными, то следует ожидать, что эти 9 галактик являются очень обособленными объектами. На Рис. 6 и в Таблице 3 все галактики, отождествленные с объектами списков [25, 26], отмечены соответствуюшими знаками.

Несмотря на малую статистику, отметим некоторую тенденцию уменьшения светимости карликовых галактик с ростом их глубины под поверхностью гипервойдов. Эта же особенность была отмечена ранее в [42]. Из общих соображений можно полагать, что такие объекты имеют рекордно низкую металличность. Это делает их интересными для спектральных наблюдений.

е) Все обнаруженные нами карликовые галактики в близких войдах имеют абсолютные величины ярче –13^m. Распределение их по расстояниям и абсолютным величинам на Рис. 7 показывает, что

Рис. 6. Распределение 48 карликовых галактик в близких (D < 40 Мпк) войдах по абсолютной величине M_B и глубине нахождения под поверхностью гипервойда. Квадратами обведены объекты, общие с галактиками из каталога близких изолированных галактик [25], треугольниками обозначены карликовые галактики поздних типов из списка [26].

Рис. 7. Распределение 68 карликовых галактик по абсолютной величине M_B и расстоянию от наблюдателя. Параметры регрессии: $M_B = -0.02 \cdot D - 14.53, R = -0.26, SD = 0.8$.

этот предел может быть вызван эффектом избирательности по расстоянию. Однако, характер данных на Рис. 7 не противоречит и предположению о существовании порога светимости, $M_B \simeq -13$ ^m0, у карликового населения войдов. Это обстоятельство может иметь существенное значение для понимания природы пустых космических объемов.

6. ЗАКЛЮЧИТЕЛЬНЫЕ ЗАМЕЧАНИЯ

Для поиска пустых объемов в Местной вселенной мы использовали алгоритм, аналогичный подходу Патири и др. [14], только с гораздо более жестким ограничением по светимости галактик, избегающих войды. В результате мы получили список близких сферических войдов, типичный диаметр которых (около 15 Мпк) примерно в три раза меньше, чем у войдов [14]. Тем не менее, суммарный объем наших войдов составил около 30% объема Местной вселенной до 40 Мпк. Распределение центров сферических войдов оказалось весьма далеким от пуассоновского. Более 90% войдов пересекаются друг с другом, образуя три гипервойда с числом исходных войдов, соответственно, 56, 22 и 5. Самый близкий и населенный гипервойд HV1 включает в себя Местный войд Талли и простирается в виде подковы, охватывающей центральную область Местного сверхскопления галактик.

В 89 выделенных нами войдах с расстояниями центров < 40 Мпк попадают 48 карликовых галактик поздних типов с абсолютными величинами в диапазоне $M_B = [-13.0, -16.7]$. Эти галактики обладают активным звездообразованием и запасами газа на единицу светимости примерно в 2-3 раза выше, чем у карликовых галактик такого же типа в более плотном окружении. Обилие нейтрального водорода у галактик в войдах неоднократно отмечалось разными авторами [17, 26, 35-37, 43, 44]. Карлики в войдах показывают тенденцию избегать глубин войдов и гипервойдов. Фактически, в центральных областях войдов отсутствуют не только нормальные, но и карликовые галактики. По грубой оценке, в сердцевинах войдов размером в половину их диаметра средняя плотность звездной массы на два порядка меньше средней космической плотности.

Здесь следует отметить следующее важное обстоятельство. Определение контуров близких войдов и отождествление карликового населения в них выполнялось нами в пространстве лучевых скоростей, а не истинных расстояний. Наличие коллективных движений галактик с амплитудами около 300 км/с может приводить к существенному искажению формы войдов и глобальной картины их распределения. Очевидно, что эта ситуация будет постепенно проясняться по мере накопления данных об индивидуальных (не кинематических) расстояниях галактик.

Как видно из данных Таблицы 3, около 1/3 карликовых галактик в близких войдах имеет своим источником фотометрический и спектральный обзор неба SDSS [13]. Продолжение этого продуктивного обзора на другие остающиеся области северного неба, а также проведение аналогичного массового обзора на южном небе позволит в скором времени лучше понять особенности карликового населения войдов, в частности, выяснить существуют ли в пустых космических объемах ультраслабые карликовые объекты со светимостями слабее $3 \times 10^7 L_{\odot}$ и водородными массами менее $10^7 M_{\odot}$.

БЛАГОДАРНОСТИ

В работе были использованы базы SDSS (http://www.sdss.org), данных HyperLeda (http://leda.univ-lyon1.fr) и NED (http://nedwww.ipac.caltech.edu). Эта работа поддержана грантами РФФИ 12-02-91338-ННИО, 11-02-00639, 11-02-90449-Укр-ф-а, ГФФИ Украины Ф40.2/49, программой НАН Украины "Космомикрофизика", а также грантом Министерства образования и науки Российской Федерации (госконтракт 14.740.11.0901) и проектом 2012-1.5-12-000-1011-004.

СПИСОК ЛИТЕРАТУРЫ

- 1. M. Joeveer, J. Einasto, and E. Tago, Monthly Notices Roy. Astronom. Soc. **185**, 357 (1978).
- S. A. Gregory and L. A. Thompson, Astrophys. J. 222, 784 (1978).
- R. P. Kirshner, A. Oemler, P. L. Schechter, and S. A. Shectman, Astrophys. J. 248, L57 (1981).
- U. Lindner, J. Einasto, M. Einasto, et al., Astronom. and Astrophys. 301, 329 (1995).
- 5. A. V. Tikhonov and I. D. Karachentsev, Astrophys. J. **653**, 969 (2006).
- 6. R. van de Weygaert and E. Platen, arXiv:0912.2997 (2009).
- 7. P. J. E. Peebles, Astrophys. J. 557, 495 (2001).
- 8. R. B. Tully and J. R. Fisher, *Nearby Galaxies Atlas*, (Cambridge Univ. Press, Cambridge, 1987).
- 9. I. D. Karachentsev, A. E. Dolphin, R. B. Tully, et al., Astronom. J. **131**, 1361 (2006).
- T. P. McIntyre, R. F. Mibchin, E. Momjian, et al., Astrophys. J. **739**, 26 (2011).
- O. G. Nasonova and I. D. Karachentsev, Astrophysics 54, 1 (2011).
- 12. M. Colless, G. Dalton, S. Maddox, et al., Monthly Notices Roy. Astronom. Soc. **328**, 1039 (2001).
- K. N. Abazajian, J. K. Adelman-McCarthy, M. A. Aqueros, et al., Astrophys. J. Suppl. 182, 543 (2009).
- S. G. Patiri, J. Betancort-Rijo, F. Prada, et al., Monthly Notices Roy. Astronom. Soc. 369, 335 (2006).
- 15. F. Hoyle, M. S. Vogeley, and D. Pan, arXiv:1205.1843 (2012).
- 16. A. Fairall, *Large-Scale Structures in the Universe* (Wiley, New York, 1998).
- 17. S. A. Pustilnik and A. L. Tepliakova, Monthly Notices Roy. Astronom. Soc. **415**, 1188 (2011).
- 18. A. Saintonge, R. Giovanelli, M. P. Haynes, et al., Astronom. J. **135**, 588 (2008).
- 19. R. Giovanelli, M. P. Haynes, B. R. Kent, et al., Astronom. J. **130**, 2598 (2005).
- I. D. Karachentsev, V. E. Karachentseva, O. V. Melnyk, et al., Astrophysical Bulletin 67, 353 (2012).
- 21. G. Paturel, C. Petit, P. Prugniel, et al., Astronom. and Astrophys. **412**, 45 (2003).

- 22. T. N. Jarrett, T. Chester, R. Cutri, et al., Astronom. J. **119**, 2498 (2000).
- 23. S. Tavasoli, K. Vasei, and R. Mohayaee, arXiv:1210.2432; submited to Monthly Notices Roy. Astronom. Soc..
- 24. H. M. Courtois, Y. Hoffman, R. B. Tully, and S. Gottloeber, Astrophys. J. **744**, 43 (2012).
- 25. I. D. Karachentsev, D. I. Makarov, V. E. Karachentseva, and O. V. Melnyk, Astrophysical Bulletin **66**, 1 (2011).
- V. E. Karachentseva, I. D. Karachentsev, and M. E. Sharina, Astrophysics 53, 462 (2010).
- 27. D. C. Martin, J. Fanson, D. Schiminovich, et al., Astrophys. J. **619**, L1 (2005).
- 28. Gil de Paz A., S. Boissier, B. F. Madore, et al., Astrophys. J. Suppl. **173**, 185 (2007).
- 29. J. C. Lee, A. Gil de Paz, R. C. Kennicutt, et al., Astrophys. J. Suppl. **192**, 6 (2011).
- 30. F. Hoyle, R. R. Randall, M. S. Vogeley, and J. Brinkmann, Astrophys. J. **620**, 618 (2005).
- 31. S. G. Patiri, F. Prada, J. Holtzman, et al., Monthly Notices Roy. Astronom. Soc. **372**, 1710 (2006).
- I. B. Vavilova, O. V. Melnyk, and A. A. Elyiv, Astron. Nachr. 330, 1004 (2009).
- 33. I. D. Karachentsev, D. I. Makarov, and E. I. Kaisina, submitted to Astrophys. J. Suppl..
- I. D. Karachentsev, V. E. Karachentseva, W. K. Huchtmeier, and D. I. Makarov, Astronom. J. 127, 2031 (2004).

- 35. W. K. Huchtmeier, U. Hopp, and B. Kuhn, Astronom. and Astrophys. **319**, 67 (1997).
- S. A. Pustilnik, J. M. Martin, W. K. Huchtmeier, et al., Astronom. and Astrophys. 389, 405, (2002).
- S. A. Pustilnik, J. M. Martin, A. L. Tepliakova, and A. Y. Kniazev, Monthly Notices Roy. Astronom. Soc. 417, 1335 (2011).
- 38. G. Sorrentino, V. Antonuccio-Delogu, and A. Rifatto, Astronom. and Astrophys. **460**, 673 (2006).
- A. Begum, J. N. Chengalur, I.D. Karachentsev, et al., Monthly Notices Roy. Astronom. Soc. 386, 1667 (2008).
- 40. K. Kreckel, P. J. E. Peebles, J. H. van Gorkom, et al., Astronom. J. **141**, 204 (2011).
- 41. G. Gentile, G. V. Angus, and B. Famaey et al., Astronom. and Astrophys. **543**, A47 (2012).
- 42. J. N. Chengalur and S. A. Pustilnik, Monthly Notices Roy. Astronom. Soc. (in press).
- 43. R. Stanonik, E. Platen, M. A. Aragon-Calvo, et al., Astronom. Soc. Pacific Conf. **421**, 107 (2010).
- 44. K. Kreckel, E. Platen, M. A. Aragon-Calvo, et al., Astronom. J. 144, 16 (2012).
- 45. C. Impey, V. Burkholder, and D. Sprayberry, Astronom. J. **131**, 2341 (2001).

Low-Density Structures in the Local Universe. II. Nearby Cosmic Voids

A. A. Elyiv, I. D. Karachentsev, V. E. Karachentseva, O. V. Melnyk, D. I. Makarov

We present the results of the search of spherical volumes containing no galaxies with luminosities brighter than the Magellanic Clouds in the Local Supercluster and its vicinity. Within a distance of 40 Mpc from us, 89 cosmic voids were discovered with the diameters of 24 to 12 Mpc, containing no galaxies with absolute magnitudes brighter than $M_K < -18.4$. A list of these voids and the sky distribution maps are given. It was found that 93% of spherical voids overlap, forming three more extended percolated voids (hypervoids). The largest of these, HV1, has 56 initial spherical cells and extends in a horseshoe shape, enveloping the Local Volume and the Virgo cluster. The Local Void (Tully, 1988) in the Hercules-Aquila region is the closest part of the HV1. Another hypervoid, HV2, contains 22 spherical voids in the Eridanus constellation, and the third compact hypervoid (HV3) comprises 6 spherical cells in the Bootes. The total volume of these voids incorporates about 30% of the Local universe. Among 2906 dwarf galaxies excluded from the original sample (n = 10502) in the search for spherical volumes, only 68 are located in the voids we have discovered. They are characterized by late morphological types (85% are Ir, Im, BCD, Sm), absolute magnitudes M_B ranging from -13.0 to -16.7, moderate star formation rates (log SSFR $\sim -10 M_{\odot} \text{ yr}^{-1} L_{\odot}^{-1}$) and gas reserves per luminosity unit twice to three times larger than in the other dwarf galaxies located in normal environments. The dwarf population of the voids shows a certain tendency to sit shallow near the surfaces of cosmic voids.

Keywords: cosmology: large-scale structure of Universe