УДК 524.333КNСеп-56-16:52-54

ПОИСК ЭВОЛЮЦИОННЫХ ИЗМЕНЕНИЙ ПЕРИОДА КЛАССИЧЕСКОЙ ЦЕФЕИДЫ KN CEN

© 2024 Л. Н. Бердников^{1*}, А. К. Дамбис¹

¹ Государственный астрономический институт им. П. К. Штернберга Московского государственного университета имени М. В. Ломоносова, Москва, 119234 Россия

Поступила в редакцию 12 мая 2023 года; после доработки 12 сентября 2023 года; принята к публикации 21 сентября 2023 года

Обработка всей имеющейся фотометрии цефеиды KN Cen позволила построить ее (O-C)-диаграмму, охватывающую временной интервал 134 года. Это позволило впервые вычислить скорость эволюционного увеличения периода $dP/dt = +2.91 \ (\pm 1.68) \ c \ rog^{-1}$, что согласуется с результатами модельных расчетов для третьего пересечения полосы нестабильности. Тест на стабильность пульсаций, предложенный Ломбардом и Коэном, подтвердил реальность эволюционного изменения периода.

Ключевые слова: звезды: переменные: цефеиды — звезды: эволюция

1. ВВЕДЕНИЕ

Согласно теории звездной эволюции, чем больше масса (а значит, и период) цефеиды, тем быстрее она эволюционирует и тем легче обнаружить эволюционные изменения ее периода (параболу на ее (O - C)-диаграмме); в частности, для цефеид с периодами больше 30 дней параболы должны быть обнаружимы уже на 30-летнем интервале времени (Fernie, 1990).

Однако изучение периодов четырнадцати таких цефеид (см. таблицу 1) показало, что случайные флуктуации периодов шести из них искажают их (O-C)-диаграммы настолько, что их параболическая форма становится обнаруживаемой только на интервале времени порядка столетия, а для двух цефеид (EV Aql и V1496 Aql) не заметна вообще. Чтобы понять причину такого несоответствия, необходимо увеличить статистику. Поэтому в данной работе мы исследуем поведение пульсаций цефеиды KN Cen, период изменения блеска которой составляет 34^{d} .

2. МЕТОДИКА И ИСПОЛЬЗУЕМЫЙ НАБЛЮДАТЕЛЬНЫЙ МАТЕРИАЛ

Переменность KN Cen открыла Swope (1931) и классифицировала ее как цефеиду с периодом 34^d02. Изучением изменяемости периода этой цефеиды занимались Szabados (1989), который не обнаружил эволюционных изменений периода на 30-летнем интервале, и Csörnyei et al. (2022), которые на интервале времени около 66 лет нашли уменьшение периода со скоростью около $50 \,\mathrm{c} \,\mathrm{rog}^{-1}$.

Для изучения периода KN Cen мы собрали опубликованные фотоэлектрические и ПЗС-наблюдения в фильтрах B и V, а также фотоэлектрические наблюдения из каталога Hipparcos (ESA, 1997) и ПЗС-наблюдения из обзоров INTEGRAL-OMC (Alfonso-Garzón et al., 2012), ASAS-3 (Pojmanski, 2002) и ASAS-SN (Jayasinghe et al., 2019), полученные в полосах, близких к V и g'. Мы также использовали сделанные нами глазомерные оценки блеска на фотопластинках коллекции университета Гарварда (США).

Сведения о количестве использованных наблюдений приведены в таблице 1: самая старая фотопластинка с изображением KN Cen, хранящаяся в Гарварде, была получена в 1889 г., а последние ПЗС-наблюдения были сделаны в 2023 г. Следовательно, наши данные охватывают временной интервал 134 года.

Для изучения изменяемости периодов цефеид мы применяем общепринятую методику анализа (O-C)-диаграмм, а самым точным методом определения остатков O-C является метод Герцшпрунга (Hertzsprung, 1919), машинная реализация которого описана в работе Berdnikov (1992). Для подтверждения реальности обнаруженных изменений периода мы используем метод, описанный Lombard and Koen (1993).

^{*}E-mail: lberdnikov@yandex.ru

Объект	Период, дни	Ссылка	Объект	Период, дни	Ссылка	Объект	Период, дни	Ссылка
EV Aql	38.7	[1]	V609 Cyg	31.1	[6]	GYSge	51.5	[11]
V1496 Aql	65.4	[2]	V1467 Cyg	48.6	[7]	S Vul	68.0	[12, 13]
II Car	64.4	[3]	V2641 Oph	38.9	[8]	SV Vul	45.1	[14]
V708 Car	51.4	[4]	RS Pup	41.4	[9]	ET Vul	53.8	[15]
V396 Cyg	33.3	[5]	CE Pup	49.3	[10]			

Таблица 1. Периоды пульсаций цефеид по литературным данным

[1] — Berdnikov (2020), [2] — Berdnikov et al. (2004), [3] — Berdnikov and Turner (2010), [4] — Berdnikov (2010), [5] — Berdnikov and Pastukhova (2012), [6] — Berdnikov et al. (2019), [7] — Berdnikov et al. (2020), [8] — Berdnikov et al. (2009b), [9] — Berdnikov et al. (2009a), [10] — Berdnikov (2021), [11] — Berdnikov et al. (2007), [12] — Mahmoud and Szabados (1980), [13] — Berdnikov (1994), [14] — Turner and Berdnikov (2004), [15] — Berdnikov and Pastukhova (2020).

 Таблица 2. Наблюдательный материал цефеиды KN Cen

 данных
 Число наблюдений
 Полоса наблюдений
 Инте

Источник данных	Число наблюдений	Полоса наблюдений	Интервал JD
Гарвард	729	Φ отографические, pg	2411147 - 2440745
Литература	886	Фотоэлектрические и ПЗС, BV	2434561 - 2456791
Hipparcos	175	Φ отоэлектрические, V	2447881-2449012
ASAS-3	982	ПЗС, V	2451877 - 2455088
INTEGRAL-OMC	3571	ПЗС, V	2452831 - 2459225
ASAS-SN	3462	$\Pi 3C, Vg'$	2457447 - 2460037

3. ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты обработки сезонных кривых KN Сеп приведены в таблице 3. Данные таблицы 3 изображены на (O - C)-диаграмме (рис. 1) квадратиками для фотографических наблюдений и точками для остальных наблюдений с вертикальными черточками, указывающими пределы ошибок определения остатков O - C.

По моментам максимального блеска из таблицы 3 получены квадратичные элементы изменения блеска цефеиды KN Cen:

$$\begin{split} \text{HJD}(\text{max}) &= 2435967.5649\,(\pm 0.230) \\ &+ 34 \stackrel{\text{d}}{\cdot} 03119526 (\pm 0.00036) \, E \\ &+ 0.1570911 \times 10^{-5} (\pm 0.905 \times 10^{-6}) \, E^2, \end{split}$$

линейная часть которых использована для вычислений остатков O - C в столбце (5) таблицы 3. Элементы уравнения (1) использовались для проведения параболы на рис. 1а; на рис. 1b показаны отклонения от этой параболы, которые указывают на возможные волнообразные изменения периода с циклом около 40 000 суток.

По фотоэлектрическим и ПЗС-наблюдениям было найдено, что максимумы в фильтрах B и g' наступают раньше, чем в фильтре V, на 0⁴0919 и

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 79 № 1 2024

 $0.4^{1}1082$ соответственно. Эти поправки учитывались при построении рис. 1 и определении элементов уравнения (1), которые, таким образом, относятся к системе V.

Для подтверждения реальности изменений периода пульсаций мы используем метод, опубликованный Lombard and Koen (1993). Для этого мы вычислили разности $\Delta(O-C)_i$ последовательных остатков O-C из таблицы 3, $\Delta(O-C)_i = (O-C)_{i+1} - (O-C)_i$, и построили график зависимости $P'_i = \Delta(O-C)_i/(E_{i+1}-E_i)$ от $E'_i = (E_i + E_{i+1})/2$ (рис. 2). Значения P'_i , которые имеют смысл среднего периода в интервале эпох $E_i - E_{i+1}$, соответствуют поведению остатков O-C на рис. 1.

Квадратичный член элементов (1) дает возможность вычислить скорость эволюционного увеличения периода $dP/dt = +2.91 \ (\pm 1.68) \ {\rm c} \ {\rm rog}^{-1}$, что сильно отличается от значения $dP/dt = -50 \ {\rm c} \ {\rm rog}^{-1}$, найденного Csörnyei et al. (2022) по диаграмме (O-C), которая покрывает правую половину рис. 1, — там даже знак другой. Это типичная ошибка, когда эволюционные изменения периода ищутся на (O-C)-диаграмме, охватывающей интервал времени всего в несколько десятков лет, как в случаях DX Gem (Berdnikov, 2019а) и BY Cas (Berdnikov, 2019b).

8*

Рис. 1. (*O* – *C*)-диаграмма для цефеиды KN Cen относительно линейных (а) и квадратичных (b) элементов (1). Линия — парабола, соответствующая элементам (1).

Таблица 3. Моменты максимума блеска KN Cen. В колонках даны: (1) и (2) — моменты максимального блеска и ошибки их определения, (3) — тип используемых наблюдений, (4) и (5) — номер эпохи E и значение остатка O - C, (6) и (7) — число наблюдений N и источник данных

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
(1)	(2)	(3)	(4)	(5)	(6)	(7)
2411945.0076	0.1852	pg	-697	3.7605	16	[1]
2413850.2108	0.2164	pg	-641	3.2121	27	[1]
2414870.0828	0.3041	pg	-611	2.1458	18	[1]
2415652.6794	0.3720	pg	-588	2.0229	23	[1]
2416468.9028	0.4208	pg	-564	1.4956	29	[1]
2417830.8603	0.2021	pg	-524	2.2020	72	[1]
2418578.5564	0.3643	pg	-502	1.2100	22	[1]
2419803.1267	0.3381	pg	-466	0.6542	21	[1]
2420992.7271	0.6582	pg	-431	-0.8401	20	[1]
2421708.0494	0.2525	pg	-410	-0.1747	23	[1]
2423137.3572	0.6223	pg	-368	-0.1805	22	[1]
2424123.7001	0.2799	pg	-339	-0.7447	19	[1]
2425008.5817	0.4841	pg	-313	-0.6764	25	[1]
2426199.2166	0.3879	pg	-278	-1.1363	28	[1]
2427219.5563	0.2344	pg	-248	-1.7349	33	[1]
2427968.1275	0.4469	pg	-226	-1.8518	27	[1]
2428445.3634	0.1759	pg	-212	-1.0538	38	[1]
2429023.7576	0.1723	pg	-195	-1.1913	60	[1]
2429397.9580	0.2462	pg	-184	-1.3350	38	[1]

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
(1)	(2)	(3)	(4)	(5)	(6)	(7)
2429739.0376	0.3899	pg	-174	-0.5682	23	[1]
2430079.0257	0.1431	pg	-164	-0.8929	34	[1]
2430657.4157	0.2662	pg	-147	-1.0345	31	[1]
2431848.6895	0.2159	pg	-112	-0.8555	60	[1]
2433890.1340	0.3141	pq	-52	-1.2877	20	[1]
2434876.9082	0.0738	B	-23	-1.4206	8	[2]
2434911.1274	0.0547	V	-22	-1.3245	7	[2]
2435217.1142	0.1143	B	-13	-1.5274	17	[3]
2435217.2167	0.1176	V	-13	-1.5167	17	[3]
2437905.7999	0.1466	B	66	-1.3127	9	[4]
2437906.2125	0.3225	V	66	-0.9919	10	[4]
2440357.0772	0.0404	В	138	-0.2874	9	[5]
2440357.1870	0.0526	V	138	-0.2695	9	[5]
2441106.2829	0.0260	B	160	0.2301	48	[6]
2441106.3894	0.0221	- V	160	0.2448	48	[6]
2441548.9355	0.0597	, B	173	0.4761	10	[7]
2441548 9370	0.0291	V	173	0.3857	11	[7]
2444035 0504	0.1284	, V	246	2 2158	7	[8]
2444715 4676	0.0284	, B	266	2.0994	42	[9]
2444715 5825	0.0206	V V	266	2.0001	48	[9]
2448085 0555	0.0329	V V	365	2.1220	89	[10]
2448629 7807	0.0525	V V	381	2.1000	86	[10]
2449820 5107	0.0178	R R	416	2.1200	28	[10]
2449820.5944	0.0177	D V	416	2.4007 2 4425	20	[11]
2450092 2137	0.0393	R R	494	1 003/	20	[11]
2450092.2197	0.0514	U V	424	1.9004	20	[12]
2450568 1256	0.0297	V V	438	1 2856	26	[12]
2450908.1200	0.0207	V V	400	1.2000 1.7675	20 50	[13]
2450500.5204	0.0203	v B	440	1.7075	53	[14]
2451283 2500	0.0106	D V	450	1.7700	53	[14]
2401200.2000	0.0100	V V	409	1.7030	49	[14]
2451057.0070	0.0270	V V	470	1.5007	42 12	[13]
2401000.0000	0.1200	v P	419	1 7574	12	[10]
2431903.7879	0.0812		419	1.7074	110	[10]
2401990.0040	0.0212	V D	400	1.0000	112	[17]
2432372.2292	0.0170		491	1.0200	40	[10]
2402072.2990	0.0192		491	1.8010 1.7217	40	[10]
2402474.0200	0.0512	V	494	1.7317	44	[17]
2402043.9100	0.0452	V	499	1.1070	23	[19]
2452746.6151	0.0137	V	502	1.7733	100	[17]
2453018.9270	0.0383	V TZ	510	1.8349	20	[20]
2453053.0426	0.0197	V	511	1.9192	173	[21]
2453086.9274	0.0187	V	512	1.7727	115	[17]
2453495.2340	0.0204	V	524	1.7040	142	[17]
2453835.4726	0.0194	V	534	1.6299	103	[17]
2454243.6870	0.0222	V	546	1.4689	117	[17]
2454549.6672	0.0140	V	555	1.1675	1419	[21]

Таблица 3. (Продолжение)

БЕРДНИКОВ, ДАМБИС

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
(1)	(2)	(3)	(4)	(5)	(6)	(7)
2454583.6317	0.0252	V	556	1.1008	102	[17]
2454957.7871	0.0323	V	567	0.9121	82	[17]
2456692.5128	0.0260	V	618	0.0426	48	[22]
2456692.5479	0.0229	В	618	0.1696	46	[22]
2457032.9642	0.0351	V	628	0.1813	357	[21]
2457543.0980	0.0449	V	643	-0.1541	111	[23]
2457543.0981	0.0447	V	643	-0.1541	112	[23]
2457849.4307	0.0210	V	652	-0.1029	252	[23]
2457849.4319	0.0202	V	652	-0.1017	268	[23]
2458223.7787	0.0188	V	663	-0.0990	320	[23]
2458325.7651	0.0133	g'	666	-0.0982	59	[23]
2458597.9855	0.0092	g'	674	-0.1281	308	[23]
2458597.9990	0.0186	g'	674	-0.1146	212	[23]
2458598.6081	0.0145	V	674	0.3864	1022	[21]
2458632.0771	0.0319	g'	675	-0.0677	128	[23]
2458870.2341	0.0392	g'	682	-0.1296	53	[23]
2458904.3334	0.0122	g'	683	-0.0616	71	[23]
2458972.4459	0.0258	g'	685	-0.0117	79	[23]
2459278.6070	0.0078	g'	694	-0.1321	268	[23]
2459312.6235	0.0197	g'	695	-0.1469	195	[23]
2459346.7020	0.0134	g'	696	-0.0997	114	[23]
2459448.7417	0.0167	g'	690	-0.2398	56	[23]
2459618.8674	0.0124	g'	695	-0.2700	144	[23]
2459652.8719	0.0301	g'	696	-0.2967	169	[23]
2459720.9306	0.0136	g'	698	-0.3003	136	[23]
2459720.9681	0.0312	g'	698	-0.2629	91	[23]
2459789.0568	0.0289	g'	700	-0.2365	67	[23]
2459993.3654	0.0353	g'	706	-0.1151	35	[23]
2459993.3762	0.0456	g'	706	-0.1043	84	[23]
2459993.3919	0.0128	g'	706	-0.0887	130	[23]

Таблица 3. (Продолжение)

[1] — Гарвард (данная работа), [2] — Walraven et al. (1958), [3] — Irwin (1961), [4] — Walraven et al. (1964), [5] — Stobie (1970), [6] — Pel (1976), [7] — Grayzeck (1978), [8] — Harris (1980), [9] — Coulson and Caldwell (1985), [10] — Hipparcos, [11] — Berdnikov and Turner (1995), [12] — Bersier (2002), [13] — Berdnikov and Turner (1998), [14] — Berdnikov and Turner (2001a), [15] — Berdnikov and Caldwell (2001), [16] — Berdnikov and Turner (2001b), [17] — ASAS-3, [18] — Berdnikov and Turner (2004c), [19] — Berdnikov and Turner (2004a), [20] — Berdnikov and Turner (2004b), [21] — INTEGRAL-OMC, [22] — Berdnikov et al. (2015), [23] — ASAS-SN.

Найденное нами значение

$$dP/dt = +2.91 \, (\pm 1.68)$$
 с год $^{-1}$

соответствует теоретическим расчетам для третьего пересечения полосы нестабильности (Fadeyev, 2014; Turner et al., 2006) для классических цефеид.

Данные таблицы 3 позволяют оценить величину случайных флуктуаций пульсационного периода. Для этого вычислялись задержки u(x) = |z(r + x) - z(r)| для максимумов, разделенных *x*-циклами. Средняя величина $\langle u(x) \rangle$, согласно Eddington and Plakidis (1929), должна быть связана со случайной флуктуацией периода ε соотношением:

$$\langle u(x) \rangle^2 = 2\alpha^2 + x\varepsilon^2, \tag{2}$$

где α характеризует величину случайных ошибок измеренных моментов максимального блеска.

Результаты вычислений представлены на рис. З и указывают на существование линейного тренда

Рис. 2. Зависимость $P'_i = ((O - C)_{i+1} - (O - C)_i)/(E_{i+1} - E_i)$ от $E'_i = (E_i + E_{i+1})/2$. Линия соответствует поведению остатков O - C на рис. 1.

Рис. 3. Зависимость квадрата средней накопленной задержки $\langle u(x) \rangle$ от разности циклов *x* для KN Cen. Линия — подгонка уравнения (2) для x < 50, которая дает величину случайных флуктуаций периода $\varepsilon = 0.042 \pm 0.022$ ($\varepsilon/P \approx 0.001$).

Рис. 4. Стандартные кривые цефеиды KN Cen в фильтрах B, g' и V.

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 79 № 1 2024

 $\langle u(x) \rangle^2$ для разности циклов x < 50, где формальная подгонка уравнения (2) дает величину случайной флуктуации периода $\varepsilon = 0.4042 \pm 0.4022$. Таким образом, полученные нами данные свидетельствуют в пользу существования небольших случайных флуктуаций периода ($\varepsilon/P \approx 0.001$).

Отметим, что полученные здесь результаты основаны на конкретных стандартных кривых. Поэтому мы приводим их в таблице 4 с тем, чтобы их можно было использовать в будущих исследованиях, а также для установления связи с нашими данными, если будут использоваться другие стандартные кривые. Таблица 4 содержит звездные величины KN Cen для фаз от 0 до 0.995 с шагом 0.005 в фильтрах B, g' и V; эти стандартные кривые графически изображены на рис. 4.

ЗАКЛЮЧЕНИЕ

Для изучения изменяемости периода KN Cen использовалось 697 оценок блеска на старых фотопластинках университета Гарварда (США); кроме того, было собрано 9076 опубликованных наблюдений. Все имеющиеся данные были обработаны методом Герцшпрунга (Hertzsprung, 1919), и было определено 95 моментов максимального блеска для построения (*O* – *C*)диаграммы, охватывающей временной интервал 134 года. Это позволило определить квадратичные элементы изменения блеска (1) и вычислить скорость эволюционного увеличения периода $dP/dt = +2.91 \ (\pm 1.68) \ {\rm c} \ {\rm гоg}^{-1}$, что согласуется с результатами модельных расчетов для третьего пересечения полосы нестабильности (Fadeyev, 2014; Turner et al., 2006). Тест на стабильность пульсаций, предложенный Lombard and Koen (1993), подтвердил реальность увеличения периода.

Таблица 4. Стандартные кривые KN Cen в фильтрах B, g' и V

Phase	В	g'	V	Phase	В	g'	V	Phase	В	g'	V
0.000	10.713	9.957	9.271	0.200	11.323	10.406	9.610	0.400	11.764	10.785	9.905
0.005	10.716	9.958	9.272	0.205	11.337	10.416	9.618	0.405	11.773	10.795	9.912
0.010	10.722	9.963	9.276	0.210	11.350	10.426	9.626	0.410	11.782	10.804	9.918
0.015	10.731	9.970	9.281	0.215	11.363	10.435	9.634	0.415	11.791	10.814	9.925
0.020	10.743	9.979	9.288	0.220	11.375	10.445	9.642	0.420	11.800	10.824	9.932
0.025	10.757	9.989	9.295	0.225	11.387	10.455	9.650	0.425	11.810	10.833	9.939
0.030	10.773	10.000	9.304	0.230	11.398	10.465	9.657	0.430	11.819	10.843	9.946
0.035	10.790	10.012	9.312	0.235	11.410	10.475	9.665	0.435	11.829	10.852	9.953
0.040	10.807	10.024	9.321	0.240	11.422	10.486	9.672	0.440	11.839	10.861	9.961
0.045	10.825	10.037	9.329	0.245	11.434	10.496	9.679	0.445	11.849	10.869	9.969
0.050	10.842	10.050	9.338	0.250	11.446	10.507	9.688	0.450	11.859	10.877	9.978
0.055	10.860	10.062	9.346	0.255	11.458	10.518	9.695	0.455	11.869	10.885	9.987
0.060	10.877	10.075	9.356	0.260	11.470	10.529	9.703	0.460	11.879	10.892	9.997
0.065	10.894	10.087	9.364	0.265	11.482	10.539	9.710	0.465	11.889	10.900	10.006
0.070	10.910	10.100	9.373	0.270	11.495	10.549	9.718	0.470	11.900	10.907	10.016
0.075	10.927	10.112	9.381	0.275	11.508	10.559	9.725	0.475	11.911	10.914	10.025
0.080	10.943	10.125	9.391	0.280	11.522	10.568	9.733	0.480	11.920	10.922	10.035
0.085	10.959	10.137	9.400	0.285	11.535	10.578	9.740	0.485	11.930	10.929	10.044
0.090	10.976	10.149	9.410	0.290	11.548	10.586	9.748	0.490	11.939	10.937	10.053
0.095	10.992	10.162	9.420	0.295	11.560	10.595	9.755	0.495	11.947	10.945	10.061
0.100	11.009	10.174	9.430	0.300	11.572	10.603	9.761	0.500	11.954	10.953	10.069
0.105	11.025	10.186	9.440	0.305	11.584	10.611	9.768	0.505	11.961	10.961	10.077
0.110	11.042	10.198	9.450	0.310	11.596	10.619	9.775	0.510	11.967	10.969	10.084
0.115	11.059	10.210	9.460	0.315	11.607	10.627	9.781	0.515	11.973	10.978	10.090
0.120	11.076	10.222	9.471	0.320	11.618	10.635	9.788	0.520	11.979	10.986	10.097
0.125	11.092	10.234	9.481	0.325	11.628	10.643	9.794	0.525	11.984	10.995	10.104
0.130	11.108	10.246	9.490	0.330	11.637	10.652	9.801	0.530	11.990	11.003	10.109
0.135	11.125	10.258	9.499	0.335	11.646	10.661	9.807	0.535	11.995	11.011	10.115
0.140	11.141	10.270	9.508	0.340	11.654	10.670	9.814	0.540	12.001	11.018	10.121
0.145	11.158	10.282	9.517	0.345	11.663	10.679	9.820	0.545	12.007	11.025	10.126
0.150	11.174	10.295	9.526	0.350	11.671	10.689	9.827	0.550	12.013	11.032	10.132
0.155	11.190	10.307	9.534	0.355	11.681	10.698	9.835	0.555	12.020	11.038	10.138
0.160	11.205	10.319	9.543	0.360	11.690	10.708	9.842	0.560	12.027	11.044	10.143
0.165	11.221	10.331	9.551	0.365	11.699	10.717	9.850	0.565	12.034	11.050	10.149
0.170	11.236	10.343	9.559	0.370	11.707	10.727	9.858	0.570	12.041	11.055	10.155
0.175	11.252	10.354	9.568	0.375	11.716	10.736	9.866	0.575	12.048	11.060	10.161
0.180	11.267	10.365	9.577	0.380	11.726	10.746	9.874	0.580	12.054	11.065	10.166
0.185	11.282	10.376	9.585	0.385	11.735	10.755	9.882	0.585	12.061	11.069	10.172
0.190	11.296	10.387	9.594	0.390	11.745	10.765	9.889	0.590	12.067	11.073	10.178
0.195	11.310	10.397	9.602	0.395	11.754	10.775	9.897	0.595	12.072	11.077	10.184

ПОИСК ЭВОЛЮЦИОННЫХ ИЗМЕНЕНИЙ ПЕРИОДА КЛАССИЧЕСКОЙ ЦЕФЕИДЫ КN СЕN121

Phase	В	g'	V	Phase	В	g'	V	Phase	В	g'	V
0.600	12.077	11.081	10.190	0.735	12.151	11.196	10.292	0.870	11.959	11.025	10.180
0.605	12.081	11.085	10.196	0.740	12.152	11.197	10.297	0.875	11.923	10.989	10.151
0.610	12.085	11.088	10.201	0.745	12.153	11.198	10.301	0.880	11.881	10.949	10.119
0.615	12.088	11.092	10.208	0.750	12.153	11.199	10.305	0.885	11.835	10.906	10.081
0.620	12.092	11.095	10.212	0.755	12.154	11.199	10.308	0.890	11.783	10.859	10.041
0.625	12.095	11.099	10.218	0.760	12.153	11.200	10.311	0.895	11.727	10.809	9.998
0.630	12.097	11.102	10.223	0.765	12.151	11.200	10.312	0.900	11.666	10.755	9.952
0.635	12.099	11.106	10.227	0.770	12.149	11.201	10.312	0.905	11.602	10.700	9.904
0.640	12.101	11.110	10.231	0.775	12.146	11.201	10.314	0.910	11.534	10.642	9.853
0.645	12.104	11.115	10.234	0.780	12.142	11.201	10.312	0.915	11.464	10.583	9.803
0.650	12.106	11.120	10.238	0.785	12.139	11.201	10.311	0.920	11.394	10.523	9.750
0.655	12.107	11.125	10.240	0.790	12.135	11.201	10.311	0.925	11.323	10.463	9.700
0.660	12.110	11.131	10.243	0.795	12.131	11.201	10.308	0.930	11.252	10.404	9.648
0.665	12.113	11.136	10.245	0.800	12.126	11.201	10.306	0.935	11.183	10.346	9.599
0.670	12.116	11.142	10.247	0.805	12.122	11.200	10.302	0.940	11.116	10.290	9.551
0.675	12.118	11.148	10.249	0.810	12.117	11.199	10.301	0.945	11.053	10.237	9.507
0.680	12.121	11.154	10.250	0.815	12.113	11.196	10.299	0.950	10.993	10.188	9.465
0.685	12.123	11.160	10.252	0.820	12.108	11.193	10.297	0.955	10.939	10.142	9.427
0.690	12.126	11.166	10.254	0.825	12.103	11.188	10.294	0.960	10.890	10.101	9.393
0.695	12.129	11.171	10.257	0.830	12.098	11.181	10.291	0.965	10.847	10.066	9.363
0.700	12.132	11.176	10.260	0.835	12.091	11.172	10.286	0.970	10.810	10.035	9.337
0.705	12.135	11.180	10.264	0.840	12.082	11.161	10.280	0.975	10.779	10.010	9.315
0.710	12.138	11.184	10.268	0.845	12.070	11.146	10.271	0.980	10.755	9.990	9.299
0.715	12.140	11.187	10.272	0.850	12.055	11.129	10.260	0.985	10.736	9.975	9.286
0.720	12.143	11.190	10.277	0.855	12.038	11.109	10.245	0.990	10.723	9.964	9.278
0.725	12.146	11.192	10.282	0.860	12.016	11.085	10.228	0.995	10.716	9.959	9.273

Таблица 4. (Продолжение)

ФИНАНСИРОВАНИЕ

Работа финансировалась за счет средств бюджета института.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы данной работы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. J. Alfonso-Garzón, A. Domingo, J. M. Mas-Hesse, and A. Giménez, Astron. and Astrophys. 548, id. A79 (2012). DOI:10.1051/0004-6361/201220095
- 2. L. N. Berdnikov, Soviet Astronomy Letters 18, 207 (1992).
- 3. L. N. Berdnikov, Astronomy Letters 20 (2), 232 (1994).
- 4. L. N. Berdnikov, Astronomy Letters 36 (8), 569 (2010). DOI:10.1134/S1063773710080050
- 5. L. N. Berdnikov, Astronomy Letters 45 (7), 435 (2019a). DOI:10.1134/S1063773719070016

6. L. N. Berdnikov, Astronomy Letters 45 (9), 593 (2019b). DOI:10.1134/S1063773719090019

- 7. L. N. Berdnikov, Astronomy Letters 46 (6), 388 (2020). DOI:10.1134/S1063773720060018
- 8. L. N. Berdnikov, Astronomy Letters 47 (6), 420 (2021). DOI:10.1134/S1063773721060025
- 9. L. N. Berdnikov, A. A. Belinskii, E. N. Pastukhova, et al., Astronomy Letters 46 (3), 156 (2020). DOI:10.1134/S1063773720030019
- 10. L. N. Berdnikov and J. A. R. Caldwell, Journal of Astronomical Data 7 (3), 3 (2001).
- 11. L. N. Berdnikov, A. A. Henden, D. G. Turner, and E. N. Pastukhova, Astronomy Letters 35 (6), 406 (2009a). DOI:10.1134/S1063773709060061
- 12. L. N. Berdnikov, A. Y. Kniazev, R. Sefako, et al., Astronomy Letters **41** (1-2), 23 (2015). DOI:10.1134/S1063773715020012
- 13. L. N. Berdnikov and E. N. Pastukhova, Reports 56 Astronomy (11),843 (2012).DOI:10.1134/S1063772912110017
- N. Berdnikov N. 14. L. and E. Pastukhova, 235Astronomy Letters 46 (2020).(4), DOI:10.1134/S1063773720040027

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 79 № 1

2024

- L. N. Berdnikov, E. N. Pastukhova, and A. K. Dambis, Astrophys. and Space Sci. **364** (6), article id. 104 (2019). DOI:10.1007/s10509-019-3594-0
- L. N. Berdnikov, E. N. Pastukhova, N. A. Gorynya, et al., Publ. Astron. Soc. Pacific **119** (851), 82 (2007). DOI:10.1086/510690
- L. N. Berdnikov, E. N. Pastukhova, D. G. Turner, and D. J. Majaess, Astronomy Letters **35** (3), 175 (2009b). DOI:10.1134/S1063773709030049
- L. N. Berdnikov, N. N. Samus, S. V. Antipin, et al., Publ. Astron. Soc. Pacific **116** (820), 536 (2004). DOI:10.1086/420984
- L. N. Berdnikov and D. G. Turner, Astronomy Letters 21 (6), 717 (1995).
- 20. L. N. Berdnikov and D. G. Turner, Astronomical and Astrophysical Transactions 16 (4), 291 (1998). DOI:10.1080/10556799808208160
- 21. L. N. Berdnikov and D. G. Turner, Astronomical and Astrophysical Transactions **19** (5), 689 (2001a). DOI:10.1080/10556790108244090
- 22. L. N. Berdnikov and D. G. Turner, Astrophys. J. Suppl. **137** (1), 209 (2001b). DOI:10.1086/323629
- 23. L. N. Berdnikov and D. G. Turner, Astronomical and Astrophysical Transactions **23** (4), 395 (2004a). DOI:10.1080/10556790410001733828
- 24. L. N. Berdnikov and D. G. Turner, Astronomical and Astrophysical Transactions 23 (6), 599 (2004b). DOI:10.1080/10556790412331335318
- 25. L. N. Berdnikov and D. G. Turner, Astronomical and Astrophysical Transactions 23 (3), 253 (2004c). DOI:10.1080/10556790410001701300
- 26. L. N. Berdnikov and D. G. Turner, Astronomy Reports **54** (5), 392 (2010). DOI:10.1134/S1063772910050033
- 27. L. N. Berndnikov and D. G. Turner, Astronomical and Astrophysical Transactions 18, 679 (2000). DOI:10.1080/10556790008213576
- 28. D. Bersier, Astrophys. J. Suppl. **140** (2), 465 (2002). DOI:10.1086/342487
- 29. I. M. Coulson and J. A. R. Caldwell, South African Astronomical Observatory Circular 9, 5 (1985).
- 30. G. Csörnyei, L. Szabados, L. Molnár, et al., Monthly Notices Royal Astron. Soc. 511 (2), 2125 (2022). DOI:10.1093/mnras/stac11
- 31. A. S. Eddington and S. Plakidis, Monthly Notices Royal Astron. Soc. 90, 65 (1929). DOI:10.1093/mnras/90.1.65

- 32. ESA, VizieR Online Data Catalog I/239 (1997).
- 33. Y. A. Fadeyev, Astronomy Letters **40** (5), 301 (2014). DOI:10.1134/S1063773714050028
- 34. J. D. Fernie, Publ. Astron. Soc. Pacific 102, 905 (1990). DOI:10.1086/132715
- 35. E. J. Grayzeck, Astron. J. **83**, 1397 (1978). DOI:10.1086/112330
- 36. H. C. Harris, Ph.D. Thesis, University of Washington, Seattle (1980).
- 37. E. Hertzsprung, Astronomische Nachrichten **210** (2), 17 (1919).
- 38. J. B. Irwin, Astrophys. J. Suppl. 6, 253 (1961). DOI:10.1086/190066
- T. Jayasinghe, K. Z. Stanek, C. S. Kochanek, et al., Monthly Notices Royal Astron. Soc. 485 (1), 961 (2019). DOI:10.1093/mnras/stz444
- 40. F. Lombard and C. Koen, Monthly Notices Royal Astron. Soc. 263, 309 (1993). DOI:10.1093/mnras/263.2.309
- 41. F. Mahmoud and L. Szabados, Information Bulletin on Variable Stars **1895**, 1 (1980).
- 42. J. W. Pel, Astron. and Astrophys. Suppl. 24, 413 (1976).
- 43. G. Pojmanski, Acta Astronomica **52**, 397 (2002). DOI:10.48550/arXiv.astro-ph/0210283
- 44. R. S. Stobie, Monthly Notices Royal Astron. Soc. **148**, 1 (1970). DOI:10.1093/mnras/148.1.1
- 45. H. H. Swope, Harvard College Observatory Bulletin **883**, 23 (1931).
- 46. L. Szabados, Communications of the Konkoly Observatory Hungary **94**, 1 (1989).
- G. Turner, M. Abdel-Sabour Abdel-Latif, and L. N. Berdnikov, Publ. Astron. Soc. Pacific 118 (841), 410 (2006). DOI:10.1086/499501
- 48. D. G. Turner and L. N. Berdnikov, Astron. and Astrophys. 423, 335 (2004). DOI:10.1051/0004-6361:20040163
- 49. J. H. Walraven, J. Tinbergen, and T. Walraven, Bull. Astron. Inst. Netherlands **17**, 520 (1964).
- 50. T. Walraven, A. B. Muller, and P. T. Oosterhoff, Bull. Astron. Inst. Netherlands 14, 81 (1958).

A Search for Evolutionary Changes in the Period of Classical Cepheid KN Cen

L. N. Berdnikov¹ and A. K. Dambis¹

¹Sternberg Astronomical Institute, Moscow State University, Moscow, 119234 Russia

All available photometry for the Cepheid KN Cen is analyzed to construct its (O - C) diagram spanning a 134-year long time interval. This made it possible for the first time to compute the rate of evolutionary period increase of the Cepheid, $dP/dt = +2.91 (\pm 1.68) \text{ s yr}^{-1}$, which is consistent with the results of model computations for the third crossing of the instability strip. The test for stability of pulsations proposed by Lombard and Koen confirmed the reality of the evolutionary period change.

Keywords: Cepheids, variability of pulsation period, stellar evolution