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Abstract   In modern theoretical physics there are two alternative possibilities of the description 

of gravitation: geometrical theory of the General Relativity Theory (GRT) of Einstein and 

non-metric theory of the material tensor Field Gravitation Theory (FGT) of Feynman. In this first 

report general provisions of these theories are stated: basic principles, Lagrangians, equations of 

the field and equations of the motion. These equations will be used for interpretations of 

observations in multimessenger astronomy, which discussed in our second report. 
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1. Gravity physics as the bases of relativistic astrophysics. 

The multi-messenger astronomy deals with the most energetic processes in the Universe 

such as compact relativistic objects (neutron and quark stars), candidates of black holes 

having stellar and galactic masses, gravitational radiation, massive supernova explosions, 

gamma ray bursts, jets from active galactic nuclei. Relativistic gravitational collapse is the 

source of the highest energy extraction from astrophysical objects and this is why the 

gravitation theory is the fundamental basis for interpretation of violent events in 

multi-messenger astronomy. 

Since the beginning of the 20th century there are two really alternative approaches for the 

description of gravitational interaction in theoretical physics: material field in Mincowski 

space-time and curvature of Riemannian space-time itself. 

Because of great success of the General Relativity Theory (GRT) in explanation of the 

existing experimental and observational facts in gravitation physics, the theory of gravitation 

as the theory of the field has still been deprived of the general attention and only GRT is 

considered in textbooks - Landau & Lifshitz 1971 [1]; Misner, Thorne & Wheeler 1973 [2]; 

Straumann 2013 [3] and others 

However already Einstein in 1926 in work "Non-Euclidean Geometry and Physics" 

(“Nichtenklidische Geometrie in der Physik”) has allocated two alternative approaches to 

interrelation of geometry and physics. He called it Helmholtz’s and Poincare's approaches. In 

particular he wrote "We will accept the first (geometrical) point of view as the most 

answering to the current state of our knowledge". But he noted also that development in 

particular of the quantum theory will perhaps force to reconsider our point of view.   

Field approach to gravitation has been partially developed by number of the famous 
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physicists (e.g. Thirring 1961 [4]; Kalman 1961 [5]). A general base for relativistic quantum 

Field Gravitation Theory (FGT) was presented by Feynman in his Caltech 1962/63 lectures   

(see Lecture 1 – “A Field Approach to Gravitation” in Feynman, Morinigo & Wagner 1995 

[6]). The gravitation phenomena in FGT are described by the relativistic quantum field which 

theoretically presented by the second rank symmetric tensor ψik  in Minkowski space with 

metric tensor  ηik . 

A decisive step in the frame of FGT was done by Sokolov & Baryshev 1980 [7] where 

they founded the crucial role of the scalar (spin-0) component of the symmetric tensor field, 

i.e. its trace  ψ(r, t) = ηik ψik , which is the irreducible part of the symmetric tensor 

representation  (together with the spin-2 traceless irreducible representation). The most 

important new aspect of the field gravitation theory is that the gravity force (Newtonian and 

relativistic) actually consists of the two types of fields – attraction spin-2 field and repulsion 

spin-0 field. Note that this fact was missed by many physicists who tried to prove the identity 

of the Einstein’s geometrical and Feynman’s relativistic quantum field descriptions of the 

gravitation. As it was demonstrated by Sokolov & Baryshev 1980 [7] the scalar part (trace) 

of the symmetric tensor potential is the true dynamical repulsive field with positive energy 

density, and it is not a “ghost” with negative energy density. 

Recent review of the FGT results was done by Baryshev 2017 [8]. It was demonstrated 

that the FGT is principally different from GRT, though main really observed relativistic 

gravity effects have the same values in both approaches. 

The reason that the intrinsic scalar field disappears in GRT but is the essential part of FGT 

follows from strict mathematical properties of tensors in Minkowski space. Indeed, the strict 

properties of the metric tensor of the Riemannian space and the general tensor rules for 

physical quantities in Minkowski space demand that for the sum of two quantities ηik + hik 
and ηik + ψik one gets the following expressions (where gik - metric tensor of the Riemannian 

space, ηik - metric tensor of the Minkowski space, hik and ψik are small quantities of the first 

order): 

 

gik(r, t) = ηik + hik(r, t) fik(r, t) = ηik + ψik(r, t) 
gik(r, t) = ηik − hik(r, t) fik(r, t) = ηik + ψik(r, t) 

gi
k = δi

k fi
k(r, t) = δi

k + ψi
k(r, t) 

gik gik = 4 fik fik = 4 + 2ψ(r, t) 

fik
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ψik 
ηik

ψ(r, t) ηik ψik

ηik + hik 
ηik + ψik gik

ηik hik ψik

 

Geometrical approach:  Field approach: 

 

gik(r, t) = ηik + hik(r, t) and fik(r, t) = ηik + ψik(r, t) 
gik(r, t) = ηik − hik(r, t) while fik(r, t) = ηik + ψik(r, t) 

gi
k = δi

k while fi
k(r, t) = δi

k + ψi
k(r, t) 

gik gik = 4 while fik fik = 4 + 2ψ(r, t) 
 
From these relations we see that there is principle difference between geometrical and 

field-theoretical approaches. Indeed, in the frame of the FGT the consistent description of the 

sum of two tensors does not allow to change the sign for the parts. Hence tensor fik cannot be 

the metric tensor of a Riemannian space and in the geometrical approach the scalar part of 

the symmetric tensor field is lost. So a “repairing” of the field approach, suggested in [2], in 

fact means replacing the field-theoretical approach in Minkowski space by the 

geometrization principle of the geometrical approach in the Riemannian space. 

It leads to the new FGT predictions: that there is EMT (positive energy density of the 

gravitational field for both spin-2 and spin-0 parts), that besides tensor gravitational waves 

there are also scalar waves, and there are relativistic compact objects without horizons 

instead of black holes with unphysical one way surfaces. 
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Field approach to gravitation has been partially developed by number of the famous 
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2. General Relativity Theory: basic principles, main equations and 

predictions. 

To understand the physical difference between GRT and FGT description of gravitation we 

start from consideration of the: 

GRT basic principles: 

1) The principle of geometrization. General relativity is based on the principle of 

geometrization which indicates that all gravitational phenomena have to be described by a 

metrics of Riemannian space. The role of the gravitational “potential” is played by the metric 

tensor gik which determines the 4-interval of the corresponding Riemannian space: � �� � �                                  (1) 

Thus, gravitation is not a material physical field in flat space-time, but is only 

manifestation of curved space-time. 

A test particle moves along a geodesic line of the Riemannian space. Note that geodesic 

motion is a form of the equivalence principle, which actually has many “non-equivalent” 

formulations like universality of free fall or philosophical equivalence of the inertial 

reference frames to the reference frames accelerated by homogeneous gravity eld. 

Equivalence principle played an important role when general relativity was born, while now 

the basic principle is the principle of geometrization, having clear mathematical formulation. 

 

2) The principle of least action. The field equations in Einstein’s GRT are derived from 

the principle of the least action at a variation of a metric tensor gik in action S (matter + 

gravitational field). It is important to note that instead of three parts (eld-interaction-matter 

of full action in the standard field theory) here full action contains only two parts: 

��� ��� �� ��� ���                  (2) 

There is no Lagrangian function for interaction because in GRT gravitational interaction 

isn't considered while interaction Lagrangian exists for other physical fields, which is 

contained in the interaction part S(int). 
 

Basic equations of general relativity: 

1) Einstein’s eld equations. Variation δgik, with restriction gikgik
 ≡ 4 gives from       

δ(S(m) + S(g)) = 0  the following eld equations: 

�� �� �� ����� �����                                 (3) 

where ik is the Ricci tensor, Tik
(m) is the energy-momentum tensor (EMT) of the matter. 

Note that Tik
(m) does not contain the energy-momentum tensor of the gravity eld itself, 

because gravitation is not a material eld in General Relativity (as also discussed below).  

 

2) The equation of motion of test particles. A mathematical consequence of the eld 

equations (3) is that due to Bianchi identity the covariant derivative of the left side equals 
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zero, so for the right side we also have ���	����                                          (4) 
This continuity equation also gives the equations of motion for a considered matter. It 

implies the geodesic equation of motion for a test particle: 

����� ��� � �                                   (5) 

ui = dxi/ds is the 4-velocity of the particle and Γi
kl is the Christo el symbol. 

Major predictions for experiments/observations are: 

All predictions of the General Relativity (both for weak and for strong fields) are derived 

from Einstein's field equations and the equations of motion. 

The classical weak gravity effects have been tested with accuracy of about 0.1-1%. Among 

these experimentally verified effects are: 

� Universality of free fall for non-rotating bodies, 

� Deection of light by massive bodies, 

� Gravitational frequency-shift, 

� Time delay of light signals, 

� Perihelion shift of a planet, 

� Lense-Thirring e ect, 

� Geodetic precession of a gyroscope, 

� The emission and detection of the quadrupole gravitational waves, 

The fundamental prediction of GRT for the strong gravity is: 

� Existence of the event horizon and singularity of Black Holes. 

 

However in GRT there are also conceptual problems. The so called “energy problem” can 

be demonstrated with the simplest case of a spherically symmetric weak static gravity eld. 

For instance, in harmonic coordinates the Landau-Lifshiz [1] symmetric pseudo-tensor gives 

negative energy density of the static spherically symmetric gravity eld 

���	 ���� ���� � �                     (6) 

The “nal” energy-momentum tensor of the gravity eld, which was derived by Grishchuk, 

Petrov & Popova [9], also has a negative energy density of the weak static eld: 

����� ����� � �                           (7) 

while Einstein’s pseudo-tensor gives: 

��� ���� � �                            (8) 

Hence, according to the LL-pseudo-tensor and the GPP-tensor the energy density of the 

static gravitational eld is negative, which conicts with the quantum eld theories of other 

fundamental interactions. We note also that the traces of all these EMPTs do not vanish for 

static elds, while it should be for massless fields. 
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3. Relativistic Quantum Field Gravitation Theory: basic principles, main 

equations and predictions. 

In Sec.1 we have emphasized that the eld gravitation theory has its roots in papers by 

Birkhoff, Thirring, Kalman, and was formulated as a relativistic quantum field by Feynman 

[6]. 

Feynman [6] has shown that gravitational interaction can be described as the interaction of 

matter with the field of a symmetric tensor of the second rank in Minkowski's space based on 

a Lagrangian formalism of the field theory. He discussed a quantum eld approach to the 

gravity just as the next fundamental physical interaction and claimed that “the geometrical 

interpretation is not really necessary or essential to physics” ([6] p. 113).   

In the frame of the field gravitation theory the crucial role of the intrinsic scalar part (the 

trace ψ(r, t) = ηikψik) of the reducible symmetric tensor potentials ψik(r, t) was discovered and 

studied by Sokolov & Baryshev 1980 [7] (recent review in Baryshev 2017 [8]. 

 

Basic principles of Relativistic Quantum Field Gravitation Theory include: 

� the inertial reference frames and Minkowski space with metric ηik; 

� the reducible symmetric second rank tensor potential ψik
(r,t) and especially 

its trace ψ(r,t) = ηik ψik  describe gravitational interaction; 

� the Lagrangian formalism and Stationary Action principle: 

��� ����� ��� �� ��� ����� ���          (9) 

����� 1�2 �� ��                                 (10)

� the principle of consistent iterations; 

� the universality of gravitational interaction  �����; 
� the conservation law of the energy-momentum; 

� the gauge invariance of the linear eld equations; 

� the positive localizable energy density and zero trace of the gravity eld EMT; 

� the quanta of the eld energy as the mediators of the gravity force; 

� the uncertainty principle and other quantum postulates of the QFT. 

 

Basic equations of the Field Gravity Theory: 

 

1) FGT eld equations. 

Using the variation principle to obtain the eld equations from the action (9) one must 

assume that the sources Tik of the eld are xed (or the motion of the matter given) and vary 

only the potentials ψik (serving as the coordinates of the system). On the other hand, to nd 

the equations of motion of the matter in the eld, one should assume the eld to be given and 

vary the trajectory of the particle (matter). So keeping the total EMT of matter in (10) xed 

and varying δψik in (9) we get the following eld equations (see [8]): 

����� ����� ���.� ��� �� ����� �� ��� ����� ��          (11) 
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The trace of the eld equations (11) gives the scalar equation for generating the scalar part 

of the symmetric second rank tensor – its trace ψ(r, t), in the form 

��� ����� �����                                (12) 

An important conceptual difference between the coordinate’s transformation in GRT and 

the gauge transformation of the gravitational potentials in FGT is that these gauge 

transformations are performed in a xed inertial reference frame. The gauge freedom allows 

one to put four additional conditions on the potentials, in particular a Lorentz invariant gauge 

– the Hilbert-Lorentz gauge: 

���� 12 	��                                    (13) 

With the gauge (13)  the eld equations get the form of wave equation: �с�	 ����� �� ����� �� �� ��                     (14) 

which describes two types of waves: first, the spin-2 traceless irreducible representation  

ψ{2}
ik

  =  ψik - (1/4) ψ(r, t) ηik  and second, the scalar (spin-0) component of the symmetric 

tensor field, i.e. its trace  ψ(r, t) = ηik ψik , which is the second irreducible part of the 

symmetric tensor representation. 

 

2) Equation of motion:  
Equation of motion for test particles in the eld gravity theory ([8]): 

�� ��������� � ��� � �                             (15) 

where mouk = pk is the 4-momentum of the particle, and 

�� ��� �� � � �� ��� �� � � ��� ��                (16) 

��� ��� ���� ��� ��		�� ��� ���� � �                     (17) 

 

 

Relativistic gravity experiments/observations in FGT: 

 

� Universality of free fall for non-rotating bodies, 

� The deection of light by massive bodies, 

� TheGravitational frequency-shift, 

� The time delay of light signals, 

� The perihelion shift of a planet, 

� The Lense-Thirring e ect, 

� The geodetic precession of a gyroscope, 

� The quadrupole spin-2 and monopole spin-0 gravitational radiation 

For the strong gravitational field the fundamental prediction is: 

� Relativistic Compact Objects without horizon, instead of Black Holes. 
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In this theory there is no problem with energy of gravitational field. In calculations 

Oschepkov 1995 [10] it is shown that energy density of static spherically symmetric 

gravitational field not only is positive for canonical EMT, but also for Gilbert's EMT: 

����௢���� ����������� ���� � �                     (18) 

 

In the following report “Gravitation theory in multimessenger astronomy II: crucial 

observational tests based on GW and optical observations” we consider applications of 

metric and field gravitation theories for interpretations of astrophysical observations.   
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