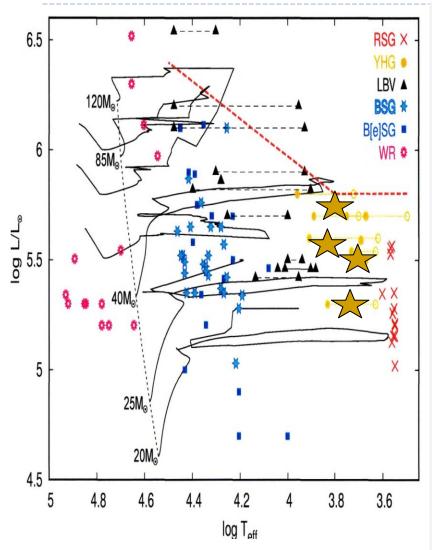


Желтый квартет в Галактике


В.Г. Клочкова

Специальная астрофизическая обсерватория РАН

Нестационарные гипер- и сверхгиганты на Г-Р диаграмме

 $O \rightarrow BSG \rightarrow RSG \rightarrow WNE \rightarrow SN$ (Ib, IIb) (Meynet et al. 2011)

Ключевые слова:

Массивные звезды $M_{init} > 20~M_{\odot}$ на быстром переходе ($\sim 10^3 \div 10^4$ лет) от RSG к WR, LBV.

класс светимости Ia⁺ состояние предсверхновой

Желтый войд, предельная светимость, ветер, пульсации,

оптические спектры, химический состав,

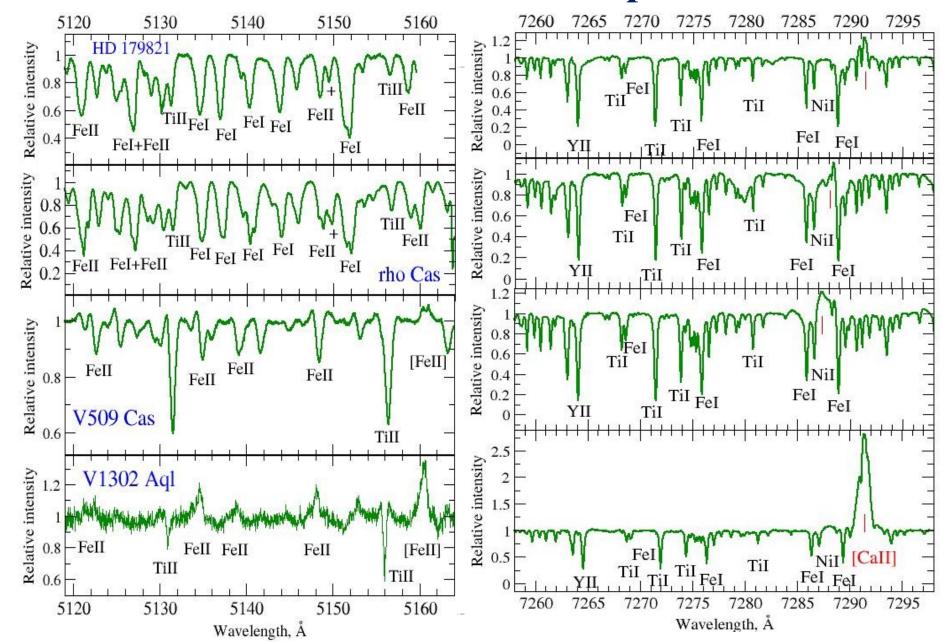
структурированная околозвездная среда, **диски**

переменность скоростей в атмосфере и оболочке

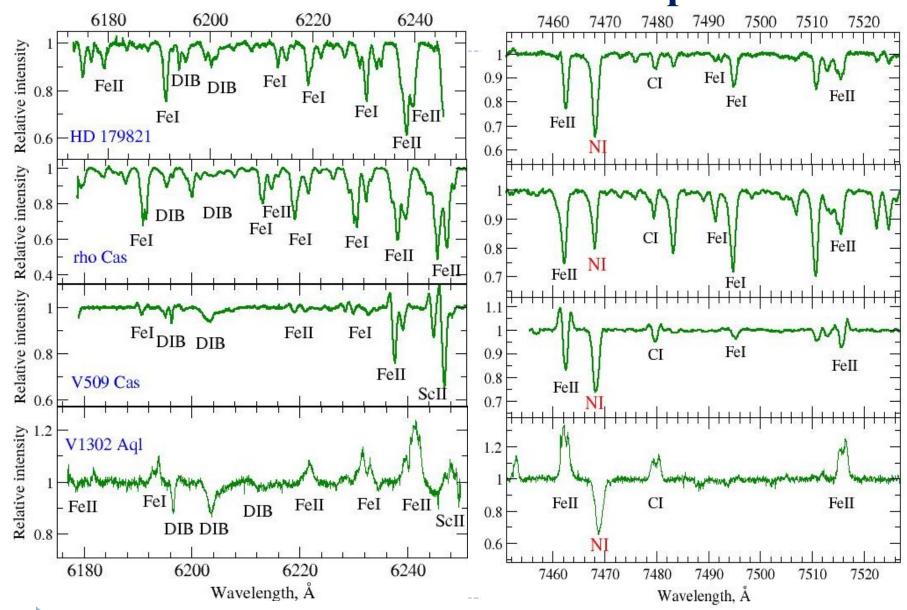
Проявления эволюции

Темп потери вещества 10-2 10-5 М_⇔ в год

Солнечная металличность Избыток азота до +1 dex


В оптических спектрах YHGs преобладают эмиссии и абсорбции ионов FeII, TiII, ScII, CrII, эмиссии FeI и абсорбции NI, OI и SiII.

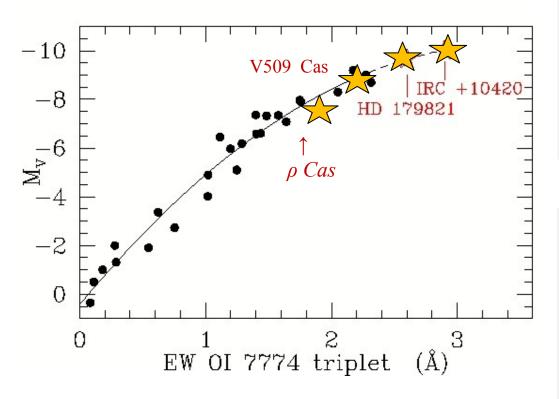
Запрещенные эмиссии [FeII], [CaII] и [OI].


[NII] \rightarrow V509 Cas

Профили линий ионов металлов разнообразны: от симметричных эмиссий, до обратных профилей типа РСуд и абсорбционных профилей с эмиссионными компонентами.

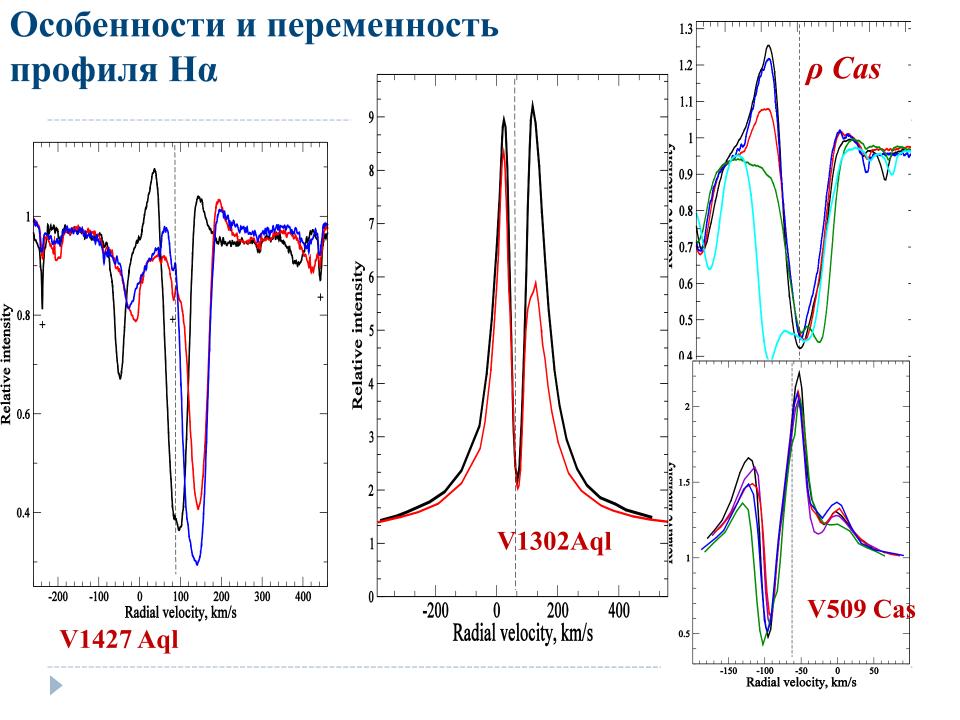
Основные особенности спектров

Основные особенности спектров

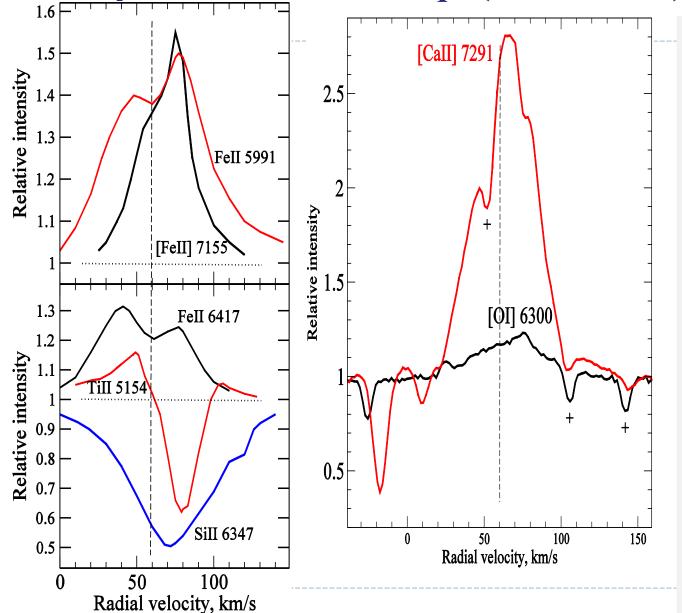

Сравнение параметров 2-х YHGs

	V1302Aql	ρ Cas –
Sp	F8-G2 $Ia^+ \rightarrow A Ia^+$ (за 30 лет)	K la (1930) → G2 lae (1995)
B, V	14.0 ^m , 11.7 ^m	5.7 ^m , 4.5 ^m
$Log(L/L_{\circ})$	5.7	5.6
T_{eff} , $lg g$, ξ_t	8500 К, 1.0, 12 км/с	6000 К, 0.4, 12 км/с
M , M _o /year	10 ^{-3.3}	$10^{-4.8} \rightarrow 5 \cdot 10^{-2.0}$
Chemistry	[Fe/H]= solar, [N/C]= $+0.5$ (Klochkova et al. 1997)	[Fe/H]= solar, Na & N excess (Боярчук, Любимков, 1983; Takeda et al. 1994)
Circumstellar structure	Av=7 ^m , IR-excess, dust+ gas masers OH 1612MHz, CO, SiO	No IR-excess, no dust, CO → shell T≈ 1500 K
	Диск? Две оболочки, дуги, пятна (HST, Tiffany et al. 2010; IR-interferometry, de Wit et al. 2008; BTA K-band speckle, Blocker et al.1999)	
V_{exp}	$\approx 40 \text{ km/c}$	$\approx 25 \text{ km/c}$
Distance 5	5 ÷7 kpc	3.1±0.5 kpc

Параметры YHGs по данным спектроскопии на БТА + НЭС

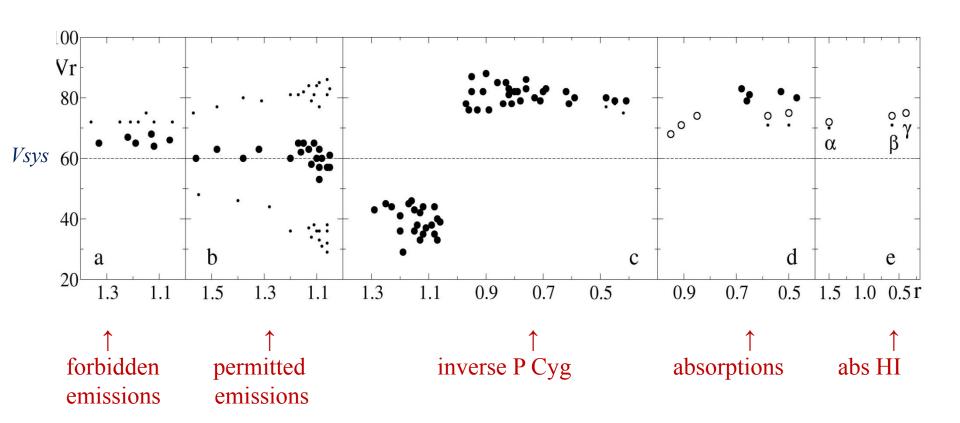

Звезда IRAS	V1427 Aql 19114+0002	ρ Cas 23518+5713	V509 Cas 22579+5640	V1302 Aql 19244+1115
M_{v}	-8.9 ^m	-8.0 ^m	-8.8 ^m	\leq -9.5^{m}
lg L/L _⇔	5.47	5.11	5.43	5.71
Амплитуда пульсаций	11 км/с	≥ 10 км/c	9 км/с	7км/с
Истечение	≈11 км/с	13 ÷23 км/с	33 ÷40 км/с	≈40 км/с
Микротурбу- лентность	6.6 км/с	12 км/с	11 км/с	12 км/с
Эмиссионные детали				
Ηα	в крыльях, var	в крыльях, var	+ var	+ var
[Fe]	-	-	+	+
[CaII]	+	var	+	+
[NII]	_	_	+	_

Желтый гипергигант V1302 Aql = IRC+10420 основные параметры



Светимость по спектральным критериям (OI 7774 Å) и кинематике $L{\approx}5\cdot10^5~L_{\odot},~M_{bol}=-9.5\pm0.4^{m},$ $M\approx20\div40~M_{\odot}~\dot{M}\approx10^{-4}~M_{\odot}$ $A_{v}{=}7^{m},~d>5$ кпк 5000 лет назад $\dot{M}\approx10^{-3}~M_{\odot}$ масса оболочки около 5 M_{\odot}

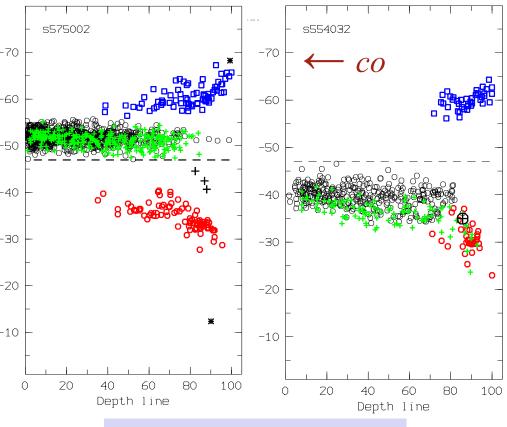
Pocт T _{eff}					
Год	Teff, K Δ Teff/год				
1892	≈2500				
1925	3500 ≈50К/год				
1972	6000 ≈90 K/год Humphreys et al., 199	93,			
1995	Klochkova et al, 1997	7			
2000	9200 ≈120 К/год Клочкова и др., 200	2			



Спектроскопия V1302 Aql (IRC+10420) на БТА

- До 1970 г. F- сверхгигант Іа спектр без эмиссий,
- в 1986 опубликован спектр с эмиссией Нα
- > с 1996 почти эмиссионный спектр
- ▶ запрещенные и разрешенные линии FeII, [FeII], YII и др.
- ≻ Крылья Нα ≈±1000 km/s
- ▶ [CaII] диск!
- мазер ОН, до этого наиболее горячие мазеры связывались со звездами М3

V1302 Aql: картина скоростей в протяженной атмосфере по различным спектральным деталям



Нестабильная атмосфера р Cas

Переменность профиля ВаІІ 6141 Å

1.1 s575002 0.9 -60 0.8 Relative intensity 0.6 0.5 -30-20 0.3 -10 0.2 0.1 20 -150 100 Radial velocity, km/s Черная линия – спокойное состояние красная – начало выброса 2013 г циан – после выброса 2013 синяя и зеленая – вблизи минимума 2017 г. расслоение оболочки после выброса 2017 г !!!

Стратификация и переменность Vr

- симметричные абсорбции
 - окрасные компоненты
 - синие компоненты
 - * D2,1 NaI + абсорбции HI
 - ионы металлов

Выводы и результаты

- ➤ Обобщены результаты многолетнего спектрального мониторинга с разрешением R ≥ 60000 желтых гипергигантов (YHGs) северной полусферы. В спектрах этих F G звезд предельной светимости, компактно расположенных в верхней части диаграмме Герцшпрунга-Рессела, выявлено разнообразие спектральных особенностей: различные типы профиля Нα, наличие (или отсутствие) запрещенных и разрешенных эмиссий, а также оболочечных компонентов.
- ▶ Изучена переменность спектральных деталей различной природы формирующихся на разных уровнях протяженной истекающей атмосферы.
- ➤ На основе однородных спектральных данных определены абсолютная светимость, скорость расширения околозвездных оболочек.
- ▶Выявлена переменность пульсационного типа, определена амплитуда пульсаций.
- ▶Доказана достоверность статуса YHG для V1427 Aql.
- ▶Зафиксированы проявления значительной динамической нестабильности верхних слоев атмосферы р Cas и расслоение ее газовой оболочки после выброса 2017 г.;
- ▶Доказано отсутствие компаньона в системе гипергиганта V509 Cas.
- ▶Сделан вывод о приближении гипергиганта V1302 Aq1 к низкотемпературной границе Желтого Войда.

См детали и ссылки: V.G. Klochkova. Astrophysical Bulletin, 2019, v.74, No.4.